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In a previous study, the onto-semiotic approach was employed to analyse
the mathematical notion of different coordinate systems, as well as some
situations and university students’ actions related to these coordinate
systems in the context of multivariate calculus. This study approaches
different coordinate systems through the process of change of basis, as
developed in the context of linear algebra, as well as the similarity
relationship between the matrices that represent the same linear transfor-
mation with respect to different bases.

Keywords: linear algebra; similar matrices; change of basis; mathematical
language; semiotic systems and registers; onto-semiotic approach

1. Different coordinate systems and change of bases

The issue of transiting between different coordinate systems, as well as the notion of
dimension in its algebraic and geometric representations, are significant within
undergraduate mathematics. The mathematical notion of different coordinate
systems is introduced formally at a pre-calculus level, with the polar system as the
first topological and algebraic example. The polar system is usually revisited as part
of the calculus sequence; in single variable calculus, the formula for integration in the
polar context is introduced, as a means to calculate area. In multivariate calculus,
work with polar, cylindrical and spherical coordinates, as well as transformations in
general, is taught in the context of multivariable functions. However, it is in the
linear algebra context that the change of reference systems is taken to another level
of sophistication when presented in terms of bases, and associated with the notions
of linear independence and spanning sets. The idea that any of the infinite vectors in
a finite-dimensional vector space can be represented as a linear combination of its
basis elements, and that different matrices can represent the same linear transfor-
mation with respect to different bases, are very abstract mathematical topics.
In addition to the aforementioned, the vectors that must be calculated are the
coordinate vectors, that is, the weights of the linear combinations. The usual
beginning approach is to work with linear transformations whose domain and
codomain are in R2, and exemplify the above mentioned topics geometrically.
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It was in this context that the questions on the interview instrument were formulated,

even though the students had finished a second linear algebra course, and had been

exposed to advanced linear algebra notions, having worked in abstract as well as

higher dimensional Euclidean vector spaces.

2. Linear algebra learning

The history of research related to the teaching of linear algebra in the US is usually

associated with the Linear Algebra Curriculum Study Group which has been active

since the 1990s [1]. The works of Carlson [2] and Carlson et al. [3] are a standard

reference for those interested in different aspects that traditionally cause problems

for students. The consensus is that the operational aspects of linear algebra are not

problematic, but the abstraction required to understand such notions as vector

space, basis and linear dependence is often overwhelming for the student. On the

other hand, the group represented by Dorier [4] has carried out research projects on

the teaching and learning of linear algebra since the late 1980s. One of their

conclusions is that the difficulties that students have with the formal aspects of linear

algebra are content-specific. In other words, while in the US it is thought that part of

the problem with the linear algebra courses is that they are introduced to students

who have had very little experience with abstract mathematics and proofs [5], Dorier

and co-workers [6,7] affirm that in France, where the students taking linear algebra

have had more exposure to formal methods in mathematics classes, the same

problems occur. The conclusion that the difficulties are content-specific comes about

after carrying out a historical analysis in which it is clear that ‘ . . . the basic idea of

linear dependence was not so easy to formalize, even by great mathematicians like

Euler’ (p. 187). For the purposes of this article, it is interesting to quote from Dorier

and co-workers that their ‘ . . . teaching experiment pays much attention to changes in

mathematical frameworks, semiotic registers of representation, languages or ways of

thinking.’ (p. 105). In particular Alves-Dias [8] reports that ‘Among the difficulties

identified in linear algebra are: the number of new words to learn, comparable to a

foreign language, (and) the totally new methods of exposition and demonstra-

tion . . . ’ (p. 256). This author also analysed questionnaires applied to 46 students,

23 of whom had taken a complementary-training course. Some of the questions

consisted of giving short explanations in which the ‘analyses bring out the misuse of

terminology: students do not hesitate, for example, to speak of the kernel of a family

of vectors or of a subspace’.
Parraguez and Oktac [9] carried out a study in which they gave students a set and

a binary operation. Students were asked to define the ‘second’ operation in such a

way that the set, with the two operations, would satisfy the axioms of a vector space.

They concluded, among other things, that ‘ . . . there should be special emphasis put

on the construction of the binary operation schema, giving students the opportunity

to experiment with different kinds of sets and binary operations’ (pp. 2123–2124).

Their study emphasized the cognitive difficulties of this task.
Oktac [10] traced the development of student interaction during an online course,

in which they analysed a problem related to the eigenvalues of two matrices, ‘AB’

and ‘BA’. She also emphasized that ‘One of the issues that has been identified as

problematic in introductory courses is student difficulties with logic, but as we shall

12 M. Montiel et al.



see, the nature of these difficulties could be quite different from what we as the

instructors assume.’ (p. 444).
Sierpinska [11], in reference to linear transformations, mentions that ‘Thinking in

terms of prototypical examples, rather than definitions, became an obstacle to our
students’ understanding’ (p. 222). A rather lengthy quote from Hillel [12] summarizes

the role that epistemological obstacles [13] seem to play in the difficult process of

generalization. The reference to the notion of vector and the learning of the general

theory is of special relevance to this article.

Thus, in a typical linear algebra course, we see two types of epistemological obstacles.
The first stems from students’ familiarity with analytic geometry and standard
coordinates. Thinking about vectors and transformations in a geometric context
certainly links these notions to more familiar ones. However, such geometric level of
thinking . . . can become an obstacle to thinking about basis (rather than axes) and about
the need for changing basis. The other obstacle comes about because specific notions
related to Rn are learned by students. These notions do solve a variety of problems
which are . . . linked to the central notion of systems of linear equations. Hence, this
algebraic level of description becomes an obstacle to learning the general theory and to
the acceptance of other kinds of objects such as functions, matrices, or polynomials as
vectors. [12, pp. 205–206]

Hillel [12] is the closest antecedent we know to this study, in terms of content.

Apart from analysing the different modes of description, the language and the

problem of representations in linear algebra in general, he specifically deals with the

problem of the representation of a linear transformation in terms of basis, in
Euclidean space (pp. 201–205). Both studies have identified certain issues of the

learning of this particular linear algebra aspect. However, the frameworks for

analysis are not the same, and the actual analysis of that study was based on class

activities and exam questions, not on a specifically designed instrument.

The framework for analysis, on which this study is based, is developed in the

following section.

3. Conceptual framework

The goal of this study is to analyse the behaviour of a group of students in relation to

certain Linear Algebra topics (vectors, change of basis, matrix representation of

linear transformations), using the theoretical and methodological tools of the

‘Onto-semiotic Approach’ (OSA) [14], which has been theoretically established and

empirically tested. In this section, we offer a brief description of the framework,
according to the following design1:

(1) The ‘object’ notion (what is a mathematical object?) and definition of a
mathematical ontology (which primary objects should be considered?)

In OSA, a mathematical object is anything that can be used, suggested or pointed to

when doing, communicating or learning mathematics. OSA [15,16] considers six
primary objects: language (terms, expressions, notations and graphics); situations

(problems, extra or intra-mathematical applications, exercises, etc.); definitions or

descriptions of mathematical notions (number, point, straight line, mean, func-

tion, etc.); propositions, properties or attributes, which usually are given as

statements; procedures or subjects’ actions when solving mathematical tasks
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(operations, algorithms, techniques and procedures) and arguments used to validate
and explain the propositions or to contrast (justify or refute) subjects’ actions.

Other aspects, as important as the mathematical objects, are as follows: 1) the agents
that move them and the meaning (straightforward or not) that is assigned to them;
2) the concrete appearance of these objects and the reference to ideal entities; and 3)
their contextual and relational function with other mathematical objects.
[17, pp. 141–142, 18]

(2) The ecology of mathematical objects (What is the contextual and functional
reality of the objects?)

In OSA, the mathematical objects are analysed by the five following dual dimensions
[15, p. 5]: personal/institutional; ostensive/non-ostensive; example/type; unitary/
systemic; expression/content.

These dual dimensions demonstrate how the primary [objects] must not be understood
in an isolated manner, but according to their function and their relation in a
contextualized mathematical activity. Furthermore, the primary [objects] and the
dualities offer a ‘photographical’ way of seeing the didactical systems, that is, they
permit the elaboration of models that capture a changing and dynamic reality. In fact,
they are indicators for the identification of the basic processes of mathematical activity.
[17, p. 142]

(3) Relation between the objects (what processes are established and how do the
mathematical objects relate to each other?)

Given that the objects are emerging from the system of practices, and that this
emergence takes place as time goes by, the distinction object-process can be
introduced in a natural way. Every type and subtype of a mathematical object is
associated with its corresponding process (problematization, definition, argumenta-
tion, particularization, generalization, etc.). We summarize in Figure 1 the
mathematical objects and processes.

The analysis and solutions detonate the use of different notions, procedures,
propositions and previous arguments, and open the possibility that new ones emerge.
The activation of these emerging objects is brought about by the processes of
definition, of creation of techniques (algorithmic or not), the determination of
propositions and argumentation. All these processes are only possible through the
use of language in different registers, that is, the use of languages that make the
codification and transference of knowledge and meanings of the mathematical
objects involved possible. For this reason, the problem-situation is placed in the
centre of the onto-semiotic analysis.

The initial objective of OSA was to give a reasonable answer, for mathematics
education, to the question: what is the meaning of a mathematical notion? Godino
and Batanero [19] proposed a pragmatic-anthropological answer: the meaning of any
mathematical object is the system of practices (operative and discursive) that a
subject carries out to solve a certain type of problem in which the object is present.
These types of correspondences, dependence relationships or functions, between an
antecedent (expression, representative and significant) and a consequent (content
and significance), are established by some subject (person or institution) according
to certain criteria or correspondence codes, and are named semiotic functions.

14 M. Montiel et al.



These semiotic functions connect the objects amongst themselves and to the practices

from which they originate.
By these means, the semiotic functions, and the associated mathematical

ontology, take into account the essentially relational nature of mathematics and

generalize, in a radical way, the notion of representation.
The role of representation does not belong, exclusively, to language: consonant

with Pierce’s semiotics, it is postulated that the different types of objects

(situation-problems, concepts, propositions, procedures and arguments) can be

expressed or contained in the semiotic functions [20].

(4) Configurations of objects (how are the objects and processes structured during

mathematical activity?)

As they relate to one another, the objects and processes form configurations, defined

as networks of objects that intervene and emerge from the systems of practices and

the relations established between them when solving a mathematical problem. These

onto-semiotic configurations can be epistemic (networks of institutional objects) or

cognitive (networks of personal objects). The epistemic configurations have an

essential social component, given that they consist of the structuring of mathematical

objects and processes (epistemic) recognized and shared by the agents of an

Figure 1. Objects and processes.
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institution (socio). For this reason, and to emphasize the social aspects in occasions,

we speak of ‘socio-epistemic’ configurations.
Formally, a configuration can be defined by a (nþmþ r)-tuple as

ðO1, . . . ,On,P1, . . . ,Pm,Sf1, . . . ,SfrÞ; such that

Oi are objects ði 2 f1, . . . , ngÞ,

Pj are processes ð j 2 f1, . . . ,mgÞ and

Sfk are semiotic functions ðk 2 f1, . . . , rgÞ:

The ‘(nþmþ r)-tuple’ is a formal notion. The mathematical objects have an
institutional reality that can be linked to the actual genesis of the notion, as well as to
the factors that play a role in transmitting it. To make this precise, the institutional

reality of the mathematical objects is linked to the:

. Topogenesis, that is, the ‘place’ where knowledge is generated. There are,

essentially, three ‘places’: the students (in a learning process with an essential
constructivist component), the teacher (in a learning process which is

fundamentally magisterial) or student–teacher (in study processes developed
according to a dynamic dialogue).

. Cronogenesis, that is, when the conditions for the emergence of knowledge
are created, in such a way that it can be shared and dealt with on a social

level.

The conditions for the emergence of knowledge in the mathematics classroom are

subject to the knowledge previously shared by the students. Indeed, the same
situation, introduced in two different groups, can lead to success or failure,

depending on the previous study process of each one of the groups, as well as their
institutional knowledge. In short, not only the knowledge to be taught, but the

necessary conditions for its emergence, must be taken into account.
Tables 2, 6 and 7, that will be presented in the analysis, are formed by the objects

and their temporal institutional reality (previous-emerging). The necessary processes
and semiotic functions for the determination of the configurations are carried out in

the socio-epistemic context (first) and then in the cognitive context (referring to the
observed behaviour). The complexity forces this to occur over a period of time and

not ‘all at once’.

4. Research questions

(1) What primary objects and semiotic functions can be identified and classified

as students confront emerging mathematical objects and must generalize
previous concepts, such as vector, function, composition of functions to

abstract vector, linear transformation and multiplication of matrices?
(2) Does the language of commutative diagrams enhance the understanding of

the change of basis and compositions in general?
(3) How does the unitary/systemic duality influence performance and under-

standing of the similarity between two matrices that represent the same linear

transformation with respect to different bases?

16 M. Montiel et al.



5. Context, methodology and instrument

The context of this study is a second linear algebra course, which is part of the core
requirement for mathematics majors at a large public research university in the
southern US. The course is cross-listed, and can serve as an upper level
undergraduate course as well as a graduate course. The composition of graduate
students varies from semester to semester. It is considered a required course for
anyone planning to do graduate work in Mathematics and who has not had the
equivalent in their undergraduate studies. Graduate students also frequently come
from Masters and PhD programmes in Physics, Finance and Economics, as well as
Mathematics Education.

The study relied on the following data. Four interview groups with a total of
10 undergraduates, of whom nine were Mathematics majors and one was Physics
major. In these interview sessions, the students were first given a questionnaire to
answer individually in a half-hour time period, after which the interviews were
conducted. Written questionnaire work, without interviews, was also analysed for
14 other students, eight of whom were students of an online version of the same
linear algebra course, corresponding to a Masters degree programme in Mathematics
Education, and the other six were students in the same course as one of the interview
groups. The interviews took place during two different semesters; for logistical
reasons, there was one interview with a group of five students, two interviews with
groups of two students and one interview with one student. The interviews were
video-recorded and lasted approximately 2 h for the group of five students, and an
hour and a half for the others. The total number of student participation, whether
interview and questionnaire, or just questionnaire, was 24.

Two of the authors of this article were present as interviewers. They used a
common protocol to ask specific ‘probing’ questions. As final grades for the course
had still not been submitted, another of the authors, who was the professor of the
course, did not participate in the interviews, so that the students would not feel under
any pressure in terms of their grades. The students were assured that their professor
would not have access to the video-recordings and their written work until after the
final grades had been submitted. The book used in the course is Leon [21,22]. Table 1
contains the questions presented to the students.

In the following section, based on previous and emergent configurations, we
analyse the potential answers and the observed behaviour. The first three
‘pre-questions’ were designed to detect the students’ open-ended responses to some
basic objects in linear algebra. These objects had been defined and worked with from
the first course. Questions 1 and 2, which deal with change of basis, were also
covered in the first course, and then revisited in the second. It is only Question 3 that
presents material introduced for the first time in the second course. It covers similar
matrices representing the same linear transformation with respect to different bases.

6. Analysis using the OSA

Each question will be accompanied by a table that represents the socio-epistemic2

configuration relevant to its content and context; Questions 1 and 2 are represented
in the same table. The students who were interviewed will be referred to as S1, S2
through S10, and the interviewers as I1 and I2. In the lecture sessions, the professor
(one of the authors) had a well-defined system of objects and meanings that were
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meant to be developed within the context of the institutional mathematical practices.
As for the written work, reference will be made to certain tendencies. It should be
mentioned that the students in the online course had access to all the lectures, as they
were video-recorded; they also attended online sessions and had access to flash
presentations designed by the same author, so the system was consistent in this group
as well. As in Font and Contreras [20], ‘the students’ cognitive configuration shows
some agreement with the socio-epistemic configuration, but also some differences’
(p. 167). The questions can be referred to in Table 1.

6.1. Pre-questions: previous and emergent configurations

In this section we refer to the ‘socio-epistemic’ configuration, and the observed
behaviours will be treated later. However, the emergence of objects is also possible
here. If we understand this well, as will be made explicit further on, the emergence is

Table 1. Questionnaire.

A. What is a vector?
B. What is a basis?
C. Why is it important to define a basis in a vector space?
(1) Let E ¼ fð1, 0Þ, ð0, 1Þg, U ¼ fð1, 1Þ, ð�1, 1Þg, V ¼ fð3, 2Þ, ð4, 3Þg. If we write the vector (3,1),

we can think of it as the coordinate vector with respect to the standard basis E. That is
ð3, 1Þ ¼ 3ð1, 0Þ þ 1ð0, 1Þ.
(a) Sketch this vector with respect to the standard basis.
(b) What would the coordinate vector of (3, 1) be with respect to the basis U?
(c) Represent the new coordinate system U graphically (you can use the standard axes as a
reference).
(d) What would the coordinate vector of (3, 1) be with respect to the basis V?
(e) Draw an analogous graph to (d), but with respect to the new coordinate system
(you can use the standard axes as a reference).

(2)
(a) Use the following commutative triangle to help you find the change of basis matrix
from U to V. Explain what you are doing:

(b) Use the matrix to check your answers in question (1). That is, apply the change of basis
matrix to take you from the coordinate vector with respect to U to the coordinate vector
with respect to V.

(3) L(x, y)¼ (2x – y, 3x) is a linear transformation from R2
!R2.

(a) Find the matrix that represents the linear transformation with respect to the basis U.
(b) Once you have this matrix, how can you find the matrix that represents the linear
transformation with respect to the basis V?
(c) What is the matrix that represents the linear transformation with respect to the
standard basis?
(d) Describe what makes these matrices similar, and what differentiates them.

18 M. Montiel et al.



not referent to new knowledge ‘that emerges’ from a mental process ‘in real time’.
In this case, a previous epistemic configuration leads to another (emerging).

We show in Table 2 some of the previous and emergent concepts, procedures,
propositions and arguments to the ‘pre-questions’ A, B and C.

In Table 2, the emergence of the objects should be understood as the transition
from one configuration to another in the configuration of semiotic functions. For
example, when it is said that the notion of vector, as an ordered set of mathematical
objects, emerges from the geometric notion of a vector in the Euclidean plane
(or space), we refer to the configuration of semiotic functions shown in Table 3,
the semiotic function B emerges from the semiotic function A.

6.1.1. The emergence of the semiotic function ‘B’ from the semiotic function ‘A’

The emergence of the semiotic function B (the abstract notion of vector) has an
‘institutional’ and ‘macro’ nature. The institutional aspect follows from the fact that
this emergence is made concrete in the university and not elsewhere. It is in this
institution that the operational and discursive systems of practices allow its
emergence or, in other words, the conditions of emergence of the different
mathematical contents.

The ‘macro’ aspect means that the emergence of the semiotic function B is not
immediate and requires a series of previous steps. The systems of practices designed
in the institution will have to allow the agents in the institution to bring the evolution
of the previous contents to the emerging ones. In these steps, the notions of basis and
change of basis are the keys. The semiotic function B emerges after the notion of
basis, as the generalization of the orthonormal basis of canonical vectors ~i ¼ ð1, 0Þ
and ~j ¼ ð0, 1Þ, in the conventional Cartesian plane (Table 4).

The notion of change of basis (and the matrix associated with the change of
basis): coming from the expression of a vector as a linear combination of ‘ordered
n-tuples’ that form a basis (the minimum spanning set and maximum linearly
independent set) this vector is represented as a linear combination of another basis,
establishing the relation between the two bases (Table 5).

This way, the configuration of semiotic functions justifies the emergence of the
abstract notion of vector (semiotic function B). However, apart from this
fundamental fact, it must be emphasized that the semiotic functions are ‘nested’
within each other to give new ones, making possible fundamental mathematical
processes (generalization, in this case). Hence, the epistemic analysis of the
emergence of semiotic functions can allow the analysis of certain behaviours
particular to a mathematical activity. The onto-semiotic complexity that is observed
here forms a reference framework that explains the observed behaviour.

However the order, or how we express it, is not the fundamental aspect. More
important is the consciousness that the semiotic functions are ‘nested’ within each
other to give new semiotic functions, permitting the key mathematical processes
(generalization in this case) and making possible a more meaningful and deeper
analysis of the observed behaviour.

6.2. Pre-questions: observed behaviour

None of the 10 students gave an institutionally ‘acceptable’ definition of vector,
using properties. The 10 students interviewed went from average to strong as
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undergraduate students, and had finished two semesters of linear algebra, in which

abstract vector spaces were defined halfway through the first course. Language,

definitions and propositions, as primary objects, can be used to characterize the

students’ semiotic functions. An analysis using the example/type duality sheds light

on the perennial problem of transiting between the particular and the general.3

In accordance to Figure 2, where some of the written answers are shown, emerging

Table 3. Configuration of semiotic functions: abstract vectors.

Content BExpression B

Expression A Content A

(a, b)

Ordered set of objects (o1,…,on)
(Abstract vectors such 

as polynomials, 
continuous functions, 

matrices) 

(a, b)

Table 4. Configuration of semiotic functions: abstract vectors.

Content DExpression D
Expression C Content C 

(a, b)
→

→

Table 5. Configuration of semiotic functions: abstract vectors.

Content FExpression F
Content EExpression E

→
→

{ }

{ }lkB

A

jiB

,'

,

=
↓
=
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concepts were not reflected, and the answers were phrased in terms of definitions and

propositions of previous physics and calculus experience.4 This was especially

relevant, as the notion of vectors as objects in a vector space, defined in terms of

properties, was emphasized and examples of the concepts introduced during the

course were often given in terms of abstract vector spaces.
The answers of the group of five students that was interviewed are shown in

Figure 2. These answers show the evolution of the semiotic function A to the

semiotic function B (Table 3), including the misconceptions and ‘relapses’ to the

primitive concept of vector.
In the spoken part of the interview session, the arguments to validate definitions

and propositions showed different degrees of correspondence between personal and

institutional (expected) meaning. For example, S2 said that a vector was:

A collection of scalars that represent a coordinate on some vector space as represented
by some ordered bases.

This was exemplified in his written answer with linear combinations of an

arbitrary vector he invented, (3,5,1), with respect to the standard bases of the vector

spaces R3 as well as P3, the space of polynomials of degree strictly less than 3 (we will

follow the notation in Leon). S2 was the only student who made reference in the

Figure 2. Answers to the question ‘What is a vector?’ (evolution to the emergent semiotic
function B, see Table 3).
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written answers to non-Euclidean vector spaces, although he gave a characterization,

not a definition. In other words, ‘the vectors characterize the polynomials’ or, ‘the

polynomials can be characterized by vectors’, but the polynomials are not conceived

of as vectors. The original definition of a vector, as an arrow with direction and

magnitude, still seems to override the abstract definition, given by the properties of a

vector space.
On the written questionnaire, S6 defined vector as the ‘direction of a line, its

angle and magnitude’, S7 mentioned that a vector ‘has to have an origin’ and S10

also affirmed that a vector ‘comes out of the origin’.
When asked to elaborate in the interview, S2 said that

It’s a point that’s visually hard to see. You’re defining an equation by using a vector
representation of an equation, but in the space of polynomials, each separate equation
represents a point in that space.

It is interesting to note that S2 uses ‘equation’ in his oral expression as

synonymous to ‘polynomial’; although he is undoubtedly proficient in his elementary

algebra, when using spoken language this basic knowledge is ignored.
S5, undoubtedly one of the strongest students interviewed, defines a vector, in his

written answer as ‘ . . . a direction in a space.’ However, when asked to elaborate S5

replied:

Yes, I was ambiguous on purpose. I know there’s a lot more than the traditional
explanation of a vector. It’s not just one, comma one, comma, one, I know there’s a lot
more to it. It’s a way of assigning a direction; you have to take into account the context.

If the written definition is taken as the expression, and the spoken elaboration as

the content, the analysis of S5’s personal meaning can be seen to correspond to what

is institutionally expected, through the duality expression/content. The semiotic

function construct is broad enough to cover the different registers (written and

spoken mathematical English).
The rest of the questions do not build upon the concept of abstract vector space,

and this point will not be touched upon again. However it should be mentioned that,

from the first course, it was emphasized that the definition of vector was much

broader than that of the vector in real Euclidean space and, as mentioned, examples

and problems in the context of polynomial, function and matrix spaces were

common. We definitely plan to do an in-depth study on the notion of vector space,

and the obstacles that arise when generalizing the geometric version to the abstract

vector space.
The pre-questions B and C asked about bases and their importance. S5 presented

a peculiar written and spoken reference to linear independence (Figure 3).
The notion of equality in real numbers is given a profound and thorough

treatment, using the OSA, in Wilhelmi et al. [23]. If we substitute the term

‘non-equal’ with the term ‘linearly independent’, we see that the answer is, indeed, an

informal description of the notion of basis. S5’s use of ‘non-equal’ seems to be an

idiosyncratic way of referring to linear independence. However, his written answer

does not conform to the institutional expectation. On the other hand, if we look at

the following interchange, we can see how S5 defines a basis, correctly, when

speaking:

I1: Some of you mentioned the linear independence of vectors. Is that a condition for
having a basis?
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S2: No, it’s a condition for having a normal basis . . .
S1, S3 and S5 (simultaneously): No, it is a condition.
S3: In order to have a spanning set, the vectors need to be linearly independent . . .
S5: In order to have the smallest spanning set they need to be linearly independent.
S4: I think linear independence is not necessary for having a basis . . .
S5: The definition of a basis is the smallest . . .
S1: Yes, the smallest linearly independent set and the largest spanning set.
S5: No, the smallest spanning set and the largest linearly independent set . . .
(He then proceeded to elaborate on the reasons behind his correct spoken definition).

There are many examples which confirm the misuse of terminology quoted in
Section 2. S7 stated that a basis is ‘a vector that makes up the vector spaces’;
however, when probed, he described a set of vectors, which spans the space and is
linearly independent. S9 and S10 were interviewed together. The two talked about
‘metric spaces’ instead of ‘vector spaces’, even after two semesters of linear algebra.
S10 had one of the highest grades in the course.

The pre-question C asked why it was important to define a basis in a vector
space. All but S6 were clear about the spanning function of a basis. However, S1 and
S2 restricted the spanning capacity to a subspace. It could be argued that they were
considering the entire vector space as a subspace of itself, and that idea was not
pursued. However, it is of interest to note, for future study, that somehow the notion
of basis can get tied to the concept of subspace.

6.3. Questions 1 and 2: previous and emergent configurations

In varying degrees, the students were accurate in their calculations and sketches. The
arrow notation, the labelling of the matrices and, in general, the transformational
and modern approach that was emphasized in the instructional process, was applied
in the written work that was analysed, although some of the students made mistakes,
especially in the order of the multiplication. Concretely, in the written work, 9 out of
14 (62%) worked the problem correctly (Table 6).

On the other hand, only S4 mentioned explicitly that the basis U was orthogonal,
while the basis V was not. However S4, when writing down the procedure, misused
the language in such a way that, although the calculation was correct, the expression
and content conveying institutional meaning was not achieved. Some explanation
should be given here.

Although the change of basis is a linear transformation, the expected procedure
will show the change of basis matrix applied to a coordinate vector ~x, in this case
with respect to the basis U, which will be transformed into a coordinate vector with

Figure 3. S5’s answer to the question ‘What is a basis?’.
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respect to the basis V. The idea of representing a linear transformation with respect

to two different bases is treated in the third question, together with the notion of

similarity. S4, on his questionnaire, carries out the procedure of finding the change of

basis matrix with success. However, S4 then tried to express the concrete result in

symbolic mathematical language, which implies abstraction from the procedure. The

matrix U, which represents the linear transformation ‘change of basis’, is replaced

with a linear transformation ‘L’, that ‘comes from nowhere’, applied to a vector ~u
that also ‘comes from nowhere’. In the context of the primary objects and the

example/type duality, the ‘situation’, as an ‘object, was resolved successfully with a

particular numerical answer, but the ‘language’ object, which required abstraction,

was erroneous. It is worthwhile mentioning that, without this level of abstraction, the

use of technology even to solve concrete problems, in particular programmes such as

Matlab, is severely restricted.
S3 and S5 were fluent and related situation and language through a semiotic

function. The concrete calculations were the expression, and the language (math-

ematical English, not symbolic language as in the case of S4) was the content.
The following sequence is presented with two goals in mind for the reader. One is

to illustrate the previous two paragraphs, and the other to touch on yet another

mathematical notion. All interviewees, except S2, took both Linear Algebra courses

with the same professor, one of the authors, and it had been emphasized since the

first course that, when a matrix is associated with a linear transformation,

Table 6. Previous and emergent concepts, procedures, propositions and arguments to
Questions 1 and 2.

Objects Previous Emergent

Concepts � Standard basis in R2 and R3

� Change of coordinate systems
(rectangular, polar, cylindrical
and spherical)

� Resolution of problems through
equations

� Composition of functions

� Change of basis to represent the
same vector

� Coordinate vectors
� Commutative diagrams as a gen-

eralization of algebraic equations
� Multiplication of the change of

basis matrices representing the
composition of two linear
transformations

Procedures � Calculus techniques; use of the
Jacobian (determinant) as the
only matrix technique

� Algebraic techniques without
matrices

� Systems of equations
� Find change of basis matrix
� Diagram chasing

Propositions � Change of variable formulas
� Equations with functions

� Those concepts related to change
of basis and coordinate vectors
as linear combinations of basis
vectors

� ‘Equations’ through commutative
diagrams

Arguments � Calculus argument to justify a
geometric representation

� Differential equations

� Linear combinations, matrix
properties

� Analysis of diagram chasing

International Journal of Mathematical Education in Science and Technology 25



the multiplication of matrices is analogous to the composition of functions and,

in the case of vector spaces, the functions are linear transformations. However, this
interpretation was not explicit in any of the students’ comments.

I2: How were you supposed to use this triangle to find the change of basis?
S5: I use the little symbols.
I1: Why do we use multiplication of matrices instead of, say, addition?
S1: It’s like in group theory when you say multiplication, even if the operation is
addition or something else. When you see two elements separated, without a symbol,
you just say multiply.
S2: The reason I say multiply is that these matrices make up a vector space of matrices
and, under the axioms of a vector space, you must have addition properties and
multiplication properties, like in real numbers (here the difference between scalar
multiplication, and multiplication, fell apart).
S3: I have never given it much thought. The process reminds me of the curl.

The order of the multiplication of the matrices also came up in the interview with

S9 and S10. In this case, S10 explained to S9 why U ‘came before’ V�1 in terms of

‘applying’ U ‘first’ to the vector, and then ‘applying V�1’, but did not connect this to
a composition of functions (linear transformations).

6.4. Question 3: previous and emergent configurations

Question 3 contains the mathematical notions that were involved in the previous
questions, but its compound nature requires a layering of techniques and more

complex semiotic functions (Table 7). The unitary/systemic duality, together with the
reification which the systemic ‘side of the coin’ implies, can explain the difficulty that

the students had with this question. Only S5 resolved the written problem
successfully, and could communicate fluently what he had done, and why. S2

expressed the meaning of similarity correctly in mathematical English (3d), but was

unable to actually solve the problem (3a, b), as he was unable to calculate the matrix
representing the linear transformation with respect to the basis U. The following is

an excerpt from the discussion of this question:

I1: It seems there was a feeling of uncertainty with this question.
S4: I saw a similar problem 15 minutes before the (final) exam. I realized it was a
wording issue, I didn’t understand what I was being asked to do.
S3: I ended up changing the vectors from the standard basis to the U basis, instead of
actually doing the linear transformation.
S2: I really didn’t know what was being asked. I found the representation from E
(the standard basis) to U, instead of back to U. I’m in the process right now of finding
from U back to U.
S1: To find the matrix representation for the linear transformation, I’m hazy on this
topic. . . . I didn’t know what to do. If I did have the correct matrix, to get to the linear
transformation with respect to V, I would go back to my commutative triangle and
apply the change of basis matrix, and that would give me the matrix representation with
respect to V.
S5: To find the linear transformation with respect to the basis V you can use the same
method I used on the last one, the change of basis matrix goes from V to the standard,
and back to V. Or by the similarity relationship, we know how to get from U to
V. . . . I put a diagram to see from what basis to what basis . . .
I1: So you actually use a little diagram.
S5: If you write the letters to let you know what you’re doing, it’s a lot easier to
understand.
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All the objects, or primary objects, play some role in the analysis of this

compound question. The diagrams, notation and mathematical English involved in

the problem seem to privilege language together with definitions; however, the

comments of the students themselves indicate that situations and procedures cannot
be carried out if definitions and propositions (the emerging objects) are not

contextualized in a coherent semiotic function. There is a chain of linear

transformations, represented by the change of basis matrix from V to U, the

matrix representing the linear transformation with respect to the basis U, and the

inverse of the change of basis matrix that converts the result of the linear
transformation in terms of the basis U, a coordinate vector, to one that represents

the linear transformation with respect to the basis V. If each part or ‘unit’ is

understood separately, without a systemic understanding that implies reification, the

students cannot even proceed mechanically when confronted with a situation.

A semester of linear algebra, plus a fourth of a second semester, is represented in this
problem. When the expectations are phrased in terms of coherent semiotic functions,

different levels of mastery of the mathematical objects point to the key issues in the

learning of the concepts related to the change of coordinate system. These are the

issues that should be addressed in the didactic process.

Table 7. Previous and emergent concepts, procedures, propositions and arguments to
Question 3.

Objects Previous Emergent

Concepts � Functions without structure
� Multivariate functions with scalar

codomain
� Evaluation of vector functions,

usually with scalar domain

� Functions with structure, linear
transformations

� Domain and codomain as vector
spaces

� Matrix representing a linear
transformation

� Similar matrices representing the
same linear transformation

Procedures � Evaluate functions and inverse
functions

� Geometric representations

� Finding change of basis matrix
and its inverse

� Setting up the similarity relation-
ship to find the matrix represent-
ing the same linear transfor-
mation with respect to the other
basis

Propositions � Inverse Function Theorem � Matrix Representation Theorem
� Theorem on similarity between

two matrices representing the
same linear transformation

Arguments � A function consists of a domain, a
codomain and an association rule

� Existence by constructing the
matrix representing the linear
transformation with respect to the
standard basis

� The matrix is not unique, it
changes with respect to the basis
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7. Synthesis, conclusions and prospective

Although topics in the linear algebra curriculum have been subject of important and
solid studies (see Section 2), previous research, within any framework, on the

mathematical concept of change of coordinate systems is practically non-existent.

As was mentioned above, Hillel’s [12] chapter in Dorier’s [4] anthology on the
teaching of Linear Algebra is the closest antecedent we have found. This study,

among the other conclusions presented in this section, reinforces Hillel’s observation

that ‘ . . . the persistence of mistakes with this kind of problem points to the existence
of an obstacle that is of a more conceptual nature, and not just related to a difficulty

in the operationalization of a procedure’ (p. 205). In our case, this article is part of an

ongoing process in which we are developing a much more sophisticated description

of an epistemic configuration for this topic [17,18,24].
The transformation of expressions to content through semiotic functions, and the

identification of chains of signifiers and meanings, can be accomplished because of

the rich layering and complexity of these mathematical concepts. In general, the goal
of the sequence of studies on change of coordinate systems that is being carried out is

to create a basis for knowledge on the teaching and learning of this topic in the

contexts of linear algebra and multivariate calculus.
In answer to the research questions stated in this article, we respond as follows.

The primary objects that stood out when students confronted the emerging

mathematical objects identified in the previous section vary according to the specific

topic, although language is the leitmotiv that transcends in every case. It was seen
that none of the students defined the notion of abstract vector using properties and,

for that reason, did not appear to have grasped the institutional meaning. At the

same time, the personal meaning of the students, when expressed in the context of
the actual mathematical situations, showed different approximations to the

socio-epistemic configurations shown in the tables. Although two participants

expressed with words the fact that vectors are more than arrows in Euclidean space,
the content was poor, in institutional terms, as the properties were never mentioned.

However, examples abounded, in the didactical situation, where these same students

had confronted situations in which the context was vector spaces of polynomials,
functions and matrices.

The matrix representation of a linear transformation, in spite of the important

theorem that bears its name (the matrix representation theorem), was seen as a

procedure, in terms of primary objects. The definitions and propositions that, through
semiotic functions, relate the composition of mathematical functions to matrix

multiplication do not seem to have taken on the institutional meaning as emerging

objects. The institutional expectation of flexible mathematical thinking, through
which the multiplication of matrices will be understood as representing the

composition of linear transformations, did not appear to be part of the students’

cognitive configuration, even though it was emphasized in the didactical situation.
The procedure was taught, and the steps were carried out. However, as was pointed

out in the previous section, the generalization of previous objects is not only

desirable, but necessary, in order to carry out institutional practices. Abstraction of

concrete procedures through symbolic mathematical language is often required in the
use of technology such as Matlab, even to solve concrete problems.

The commutative diagram appears to help guide students’ procedures. The

representational semiotic function foments systemic understanding of the process
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within the unitary/systemic duality, in which the arrows point to the change of bases.

This was observed in all cases. Modern mathematics offers language objects that can

facilitate the approximation of students’ cognitive configuration to the

socio-epistemic configurations for emerging objects.
Finally, it was observed that in the compound and layered context of similarity

between matrices representing the same linear transformation with respect to

different bases, only one of the participants resolved the unitary/systemic duality in a

way that reconciled personal and institutional meaning. The fragmentation of

language and arguments into individual units caused an impasse in the majority of

students. This fragmentation, which is part of the didactic process and cannot be

avoided, also conveys partial meanings. To capture the holistic meaning is a process

that requires conscious effort on the part of the instructor, who transmits

institutional meaning. The goal is to enable students to construct their personal

meaning in a way that is compatible with the institutional meaning, although this is

not always achieved. Only in the case of one participant were the structural semiotic

functions, in which two or more objects form systems from which new objects

emerge, coherent with the corresponding socio-epistemic configuration for the

emerging objects.
It is essential to organize what must be known in order to do mathematics. This

knowledge includes, and even privileges, mathematical concepts, and it is the search

for meaning and knowledge representation that has stimulated the development of

the mathematical ontology. The communication and understanding of the mathe-

matical concepts related to the change of bases and linear transformations involve so

many subsystems that it is very important not to form descriptions that are simplistic

or reductionist.
The OSA gives us a framework to analyse, as mathematical objects, all that is

involved in the communication of mathematical ideas as well, drawing on a wealth of

instruments developed in the study of semiotics. This analysis has an essential

didactical importance in relation to linear transformations: it contributes knowledge

about the emergent processes of the abstract notion of vector.
This explanatory knowledge should permit the establishment of guidelines for the

teaching of this notion. That is, it is normative or technical knowledge. For this

reason, the need arises to design specific situations related to the ‘vector’ object,

whose preliminary analysis can be confronted with previous knowledge (concepts,

procedures, propositions and arguments) relative to the object, but whose optimal

study requires emerging knowledge.
That the preliminary analysis can be confronted with previous knowledge is

decisive because, implicitly, it leads to the rejection of the hypotheses of types:

. Cognitive. Learning is ‘accumulative’: knowledge is acquired once and for

all, without relapses or contradictions.
. Pedagogic. Teaching is linear, and the correct selection, sequence and

distribution in time of the knowledge are sufficient.

These hypotheses underlie a fundamental misconception: the illusion that

mathematical learning can be described, by analogy, with the ‘formal, axiomatic

structure of the associated mathematics’. The configurations of semiotic functions

that are identified determine guidelines for a spiral curriculum that overcomes these

two false hypotheses, contradicted so often in practice.
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This leads, as well, to question if an answer that adjusts exclusively to the general
norm ‘it is necessary to answer exactly in terms of the knowledge that the professor
introduced’ really can be meaningful without ‘mathematical necessity’. This practice
can alienate students from establishing a relation with the mathematical knowledge
(that determines the mathematical necessity to act and argue in a determined way)
and cause them to just proceed within the institutional restrictions imposed by the
professor (the pedagogical necessity to act and argue in terms of the instructional
process). Examples of this type of relation, ‘without mathematical necessity’ are the
answers to question 1b, whose response can be given in terms pre-university
elementary algebra. However, almost all the students carried out complex matrix
manipulations according to the notation and methods introduced in the course.
The key question is, then, the determination of situations where these notations and
methods were necessary according to the mathematical point of view (efficiency,
economy, generalization, etc.).

The identification and description of situations that take the configuration of
semiotic functions into account, and the elaboration of a spiral curriculum that
contains them (coherent with the institutional meaning pursued) is an open question
that will be dealt with in future research.

Notes

1. The reader can find detailed presentations of these aspects in the cited articles, which can
be found at http://www.ugr.es/�jgodino/indice_eos.htm

2. In this circumstance we emphasize the social aspect of the configuration, given that the
referenced institution (Mathematics Department) is fundamental in all the analysis done.

3. The example/type duality (also called intensive/extensive) allows us to describe the
different language games that arise in a particular case (e.g. the function y ¼ 2x þ 1) or in
a more general case (e.g. the family of functions y ¼ mx þ n). This duality allows us to
explain a basic aspect of mathematical activity: the use of generic elements and the
associated processes of generalization.

4. However, several of these students had performed correctly on exams where, systemat-
ically, problems related to concepts, such as linear independence, linear transformation,
change of basis, or least squares, were given in the context of vector spaces of
polynomials, functions, and matrices.

References

[1] G. Harel, The linear algebra study group recommendations: moving beyond concept

definition, in Resources for Teaching Linear Algebra, D. Carlson, C. Johnson, D. Lay,

D. Porter, A. Watkins, and W. Watkins, eds., The Mathematical Association of America,

Washington, DC, 1997, pp. 107–126, MAA Notes 42.
[2] D. Carlson, Teaching linear algebra: Must the fog always roll in? College Math. J. 12(1)

(1993), pp. 41–46.

[3] D. Carlson, C. Johnson, D. Lay, A. Porter, A. Watkins, and W. Watkins (eds.), Resources

for Teaching Linear Algebra, Mathematical Association of America, New York, NY, 1997.
[4] J.-L. Dorier (ed.), On the Teaching of Linear Algebra, Kluwer Academic, Dordrecht, NED,

2000.
[5] F. Uhlig, The role of proof in comprehending and teaching elementary linear algebra,

Educ. Stud. Math. 50 (2002), pp. 335–346.

30 M. Montiel et al.



[6] J.-L. Dorier, A. Robert, J. Robinet, and M. Rogalski, Teaching and learning linear algebra

in first year of French Science University, in Proceedings of the First Conference of the

European Society for Research in Mathematics Education, I. Schwank, ed., Vol. I,

Forschungsinstitut fuer Mathematikdidaktik, Osnabrück, GER, 1999, pp. 103–112.

Available at http://www.fmd.uni-osnabrueck.de/ebooks/erme/cerme1-proceedings/

papers/g1-dorier-et-al.pdf
[7] J.L. Dorier and A. Sierpinska, Research into the teaching and learning of linear algebra,

in The Teaching and Learning of Mathematics at the University Level, H. Derek,
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