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ABSTRACT. Although studies on students’ difficulties in producing mathematical proofs
have been carried out in different countries, few research workers have focussed their
attention on the identification of mathematical proof schemes in university students. This
information is potentially useful for secondary school teachers and university lecturers. In
this article, we study mathematical proof schemes of students starting their studies at the
University of Córdoba (Spain) and we relate these schemes to the meanings of mathemat-
ical proof in different institutional contexts: daily life, experimental sciences, professional
mathematics, logic and foundations of mathematics. The main conclusion of our research is
the difficulty of the deductive mathematical proof for these students. Moreover, we suggest
that the different institutional meanings of proof might help to explain this difficulty.

1. INTRODUCTION

There has been a growing interest, in mathematics education, in the prob-
lems of teaching and learning of proof. One indicator of this concern is the
electronic newsletter about proof edited by M. A. Mariotti (URL: http://
www-didactique.imag.fr/preuve). This interest is justified by the essential
role of validation within mathematics, and by the students’ low level in
understanding and building mathematical proofs (Galbraith, 1981; Fisc-
hbein, 1982; Senk, 1985; Martin and Harel, 1989; Chazan, 1993; Battista
and Clements, 1995; Zaslavsky and Ron, 1998; Healy and Hoyles, 2000;
Recio, 2000).

Although the aforementioned investigations have made important con-
tributions to mathematics education, there is still some room for new re-
search that clarifies the meaning of mathematical proof, its different types
and mutual relationships. The idea of proof, which is understood in a rigid
and absolute way by the mathematical community, seems to have been
considered the only valid conception. However, we consider it necessary to
carry out a systematic study of the various meanings of proof, not just from
the subjective point of view, but also in different institutional contexts.
Such study would serve to compare the contributions from different re-
search works, pose new research problems, give alternative interpretations
to students’ observed difficulties, and elaborate new didactic proposals.
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In this article we present the results of a research study about students’
capability to build elementary deductive proofs when they start their uni-
versity studies. We interpret and classify the students’ answers to a written
questionnaire (including a geometrical and an arithmetical problem) as
personal proof schemes (Harel and Sowder, 1998), and we identify four
basic types of proof schemes. A quantitative analysis of the results reveals
the low level of this capability in our students (University of Córdoba,
Spain).

Starting from an anthropological view of knowledge, we put forward
the hypothesis that the main features of students’ proof schemes can be
related with the meanings of proof in different institutional contexts, and
that such institutional meanings could offer explanations of the personal
proof schemes. This statement is supported by our study of the institu-
tional meanings of proof (Godino and Batanero, 1998) in the following
contexts: daily life, experimental sciences, professional mathematics, logic
and foundations of mathematics.

We propose that the teaching of proof in school mathematics should
take into account these diverse institutional meanings in the aim of helping
students discern circumstances appropriate for each type of argument.

2. EXPERIMENTAL RESEARCH ON STUDENTS’ PROOF SCHEMES

In the aim of characterizing mathematical proof schemes of students en-
tering the University of Córdoba (Spain), a written questionnaire was de-
signed and given to the students in the course of the academic year 1994–
95. Later on, in 1997–98, the same written questionnaire was given to a
second sample of students, in order to verify our previous results.

2.1. Sample

The questionnaire was given to the students just a few days after the classes
at the University of Córdoba (Spain) had started. In the first sample, which
was taken at the beginning of the academic year 1994–95, 429 students
who took a mathematics subject in different faculties and polytechnic
schools, were selected. At the beginning of the academic year 1997–98, the
test was given to a second sample of 193 students from the same university
institutions.
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Figure 1. Drawing related to the expected solution of Problem 2.

2.2. Questionnaire

The written questionnaire was composed of two problems, whose solution
required the students to possess some proving capability in mathemat-
ics. The problems involved very elementary notions, well known by all
students. The first problem was stated as follows:

Problem 1 (Arithmetic)
Prove that the difference between the squares of every two consecutive natural
numbers is always an odd number, and that it is equal to the sum of these numbers
(Recall that the set of natural numbers is the infinite series of numbers 0, 1, 2, 3,
. . .).

This problem was intended to identify students’ mathematical proof schemes
in a numerical context. The standard correct answer is as follows:

Let us call n and n+1 the two consecutive natural numbers. Then the difference of
squares of these numbers is: (n+1)2 – n2 = n2 + 2n + 1 – n2 = 2n + 1. Therefore:
(n+1)2 - n2 = 2n + 1= n + (n+1). The first equality proves that the difference
between the squares of every two consecutive natural numbers is an odd number
(an even number plus one). The second equality proves that this odd number is
equal to the sum of these two consecutive numbers.

The second problem was the following:

Problem 2 (Geometry)
Prove that the bisectors of any two adjacent angles form a right angle. (Recall
that two angles are adjacent if they have the vertex and a side in common, and
their sum is a flat angle, that is to say, 180◦. Recall that a right angle measures
90◦. The angle bisector is the ray that splits the angle into two equals parts).

This problem was intended to identify students’ mathematical proof schemes
in a geometric context. The standard correct answer is as follows:

If a and b are two adjacent angles, then:
a + b = 180◦
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Therefore, the angle that the bisectors form is:
a/2 + b/2 = (a+b)/2 = 180◦/2 = 90◦

2.3. Categorisation of answers

Students’ answers were classified into five different categories. These cat-
egories were elaborated in a previous study on other university students’
generalization and symbolization abilities (Recio and Godino, 1996):

1. The answer is very deficient (confused, incoherent).
2. The student checks the proposition with examples, without serious

mistakes.
3. The student checks the proposition with examples, and asserts its gen-

eral validity.
4. The student justifies the validity of the proposition, by using other

well-known theorems or propositions, by means of partially correct
procedures.

5. The student gives a substantially correct proof, which includes an ap-
propriate symbolisation.

Answers of Type 1 include basic difficulties in understanding the statement
of the problem, in making abstract operations, etc. To identify clearly the
type of difficulty in each case it would be necessary to carry out clinical
interviews. Answers of Type 2 are easy to interpret, so it is not necessary
to give illustrative examples thereof.

We can select the following examples of answers of Type 3 in the
arithmetic problem:

a) The student checks the proposition with examples and generalises its
validity by asserting that it is always true:

36 – 25 = 11
9 – 4 = 5
It is true that the difference between the squares of any two consecutive nat-
ural numbers is always an odd number, equal to the sum of these numbers.

b) The student checks the proposition in particular cases, introducing
some incorrect or very insufficient symbolic formulation:

36 – 25 = 6 + 5
11 = 11
We have
49 – 36 = 7 + 6
13 = 13
We have
A2 – B2 = A + B
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The use of symbolism indicates that there is some generalisation in-
volved.

c) The student checks the proposition in particular cases, and also de-
velops a generalising logical argument, which is clearly incorrect or
insufficient:

It will always be an odd number because the sum of an even number and an
odd number will always be an odd number, and in two consecutive numbers
one has to be even and the other odd.

In this case, the concepts used in the argumentation already have some
generality. The student considers the objects not as specific entities,
but as representatives of categories, although the reasoning is still
only just beginning.

In the geometrical problem we can select the following examples of Type
3 answers:

a) The student checks the proposition with examples and generalises its
validity by asserting that it is always true:

The simplest case is that of two right adjacent (90◦) angles. If we draw their
bisectors a and b, the angles are divided into angles of 45◦ and their sum
is 90◦, that is to say, a right angle. The same thing would happen for any
given angle. If we draw the bisectors of any two adjacent angles, these will
form an angle of 90◦. Another example of adjacent angles would be 30◦ and
150◦. . . (The student continues describing the example).

b) The student checks the proposition in particular cases, introducing
some wrong or very insufficient symbolic formulation:

Let the two angles be A and B, A + B = 180◦. Let A = 30◦ and B = 150◦.
The bisectors will be 15◦ and 75◦; 15◦ + 75◦ = 90◦. The bisectors give rise
to an angle of 90◦.

c) The student checks the proposition in particular cases, and also de-
velops a generalising logical argument, which is clearly incorrect or
insufficient:

If each angle is 90◦, the bisectors are 45◦, so that 45◦ + 45◦ = 90◦, which
means that the bisectors make an angle of 90◦. If the angles have a value
other than 90◦, one increases as much as the other decreases and the bisect-
ors still make an angle of 90◦.

A general feature of Type 4 answers is that the validity of the proposition
is logically justified, in a partially correct way, based on other well-known
theorems or propositions.

In the arithmetic problem we can select the following examples:

a) The student gives a logical, not symbolic, and substantially correct
argument (to the extent that the lack of symbols allows it):
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The square of an odd number is an odd number. The square of an even
number is an even number. The difference between an even number and
an odd number (or between an odd number and a even number) is an odd
number. Given two consecutive natural numbers one is an even number and
the other an odd number; hence their squares will be an even number and
the other an odd number, and the difference of their squares will be an odd
number.

b) The student gives a symbolic, partially incorrect argument:

x2 – (x + 1)2 = y; y = x + (x + 1)
x2 – (x2+ 2x + 1) = x + (x + 1)
x2 – x2 – 2x – 1 = x + x + 1
–2x – 1 = 2x + 1
–4x = – 2
4x = 2
x = 2; x + 1 = 2 + 1 = 3
y = 2 + (2 + 1) = 5

The student began the argumentation correctly, but he was unable to
give a complete correct proof. Anyway, he operates with symbols.

The following are examples of Type 4 answers in the geometric problem:

a) The student gives a logical, not symbolic, and substantially correct
argument (to the extent that the lack of symbols allows it):

If two angles are adjacent, their sum is 180◦ and when you make the bisect-
ors, that is to say, when you split each of the two angles, the sum of half
one angle and half the other is 90◦. That is the same as splitting the straight
angle into its two halves.

b) The student gives a symbolic, partially incorrect argument:

Suppose we have a 50◦ angle and a 130◦ angle. Their sum is 180◦. If the
bisector splits the angle in two equal parts, each part is 25◦ and 65◦, re-
spectively. Therefore, the sum of these resulting angles is 90◦, a right angle
(a drawing is included).We have:
g = 180◦; a = 50◦; b = 130◦; f = 90◦
g = a + b
a/2 + b/2 = g/2 = f
g/2 = f.

2.4. Quantitative results

In Table I we present the absolute frequencies and percentages of each type
of answers in the two problems included in the questionnaire.

We can observe that the percentage of students giving a substantially
correct mathematical proof to each problem is less than 50%. This per-
centage is reduced to 32.9% of students when we consider correct answers
to the two problems, since only 141 of 429 students solved both problems
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TABLE I

Frequencies and percentages of types of answers in the 1994–95 population sample

Type of Problem 1 (Arithmetic) Problem 2 (Geometry)

answer Frequency % Cumulative % Frequency % Cumulative %

1 16 3.7 3.7 34 7.9 7.9

2 48 11.2 14.9 85 19.8 27.7

3 122 28.4 43.4 75 17.5 45.2

4 39 9.1 52.5 53 12.4 57.6

5 204 47.5 100 182 42.4 100

correctly in the academic year 1994–95. Only 44 of 193 students gave cor-
rect answers to both problems in the 1997–98 academic year (i.e., 22.8%
of the total number of students).

These results, and other complementary data (Recio, 2000), confirm
our initial assumption about the great difficulties that deductive mathemat-
ical proof present for students starting university, even in the case of quite
elementary propositions.

In order to analyse the possible dependence of the test results on the
mathematical content of the problems (arithmetical vs. geometrical), we
also studied the association between the test scores in both problems. An
association between these scores would suggest that the students’ mathem-
atical proof level is high or low, regardless of the problem’s mathematical
content, while lack of association would indicate an influence of this con-
tent in the proof schemes. To study this association we prepared the cross
tabulation of the variables (ARITHMETIC, GEOMETRY) in Table II.

In Table II the relative frequency of each cell refers to the column total,
i.e., it is the relative frequency distribution of the score on the arithmetic
problem conditioned by the score on the geometric problem. We can ob-
serve the increase of one score as a function of the other, as well as the high
dependence of the conditioned distributions of rows regarding columns.

The frequencies tend to concentrate in general on the diagonal and ad-
jacent lines; this fact is quantified with the Goodman and Kruskal’ Gamma
association coefficient for ordinal variables equal to 0.71, which is relat-
ively high. This is a measure of association for rxc contingency tables of
ordinal variables. It measures, on a (–1, 1) scale, the degree of agreement
between two different orderings of the same objects. In this case it meas-
ures the degree of agreement between the scores assigned to each student
in the two different problems, which was, therefore 71%. Under the condi-
tions of the test, this suggests that the mathematical content (arithmetical/
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TABLE II

Frequencies of the two-dimensional variable (ARITH-
METIC, GEOMETRY) in the 1994–95 population
sample

Score in the geometry problem

1 2 3 4 5 Total

Score in the arithmetic problem

1 7 9 0 0 0 16

20.6 10.6 0.0 0.0 0.0 3.7

2 9 26 10 2 1 48

26.5 30.6 13.3 3.8 0.6 11.2

3 16 30 33 18 25 122

47.1 35.3 44.0 33.9 13.7 28.4

4 1 8 5 0 15 39

2.9 9.4 6.7 18.8 8.2 9.1

5 1 12 27 23 141 204

2.9 14.1 36.0 43.4 77.5 47.5

Total 34 85 75 53 182 429

7.9 19.8 17.5 12.4 42.4 100.0

geometrical) of the problems had little influence on mathematical proof ca-
pacity, showing that students’ proof schemes stayed relatively independent
from the mathematical content of the problems posed.

2.5. Interpretation of answers as proof schemes

The high association value found between students’ answers to the arith-
metic and the geometry problems led us to interpreting the proposed cat-
egories as personal schemes of mathematical proof. We considered these
schemes as the subjects’ stable answer models in proof problems with
elementary content and structure, where knowledge of certain techniques
of symbolization and generalization was needed.

We do not take into account Type 1 answers to classify the students’
proof schemes, since the analysis of these answers would require an in-
depth study using clinical interviews. This option does not affect the valid-
ity of the proposed model.

We can classify Type 2 answers, which are mere confirmations of the
propositions to prove, using particular examples, as explanatory argument-
ations. In these processes the subject explains, by means of specific ex-
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amples, the meaning of the proposition to prove. There is neither a true
intention to validate the proposition, nor an intention to affirm the validity
of the proposition for all possible cases. Since there is only an explanatory
intention, we describe these types of answers as explanatory argumentative
schemes.

Type 3 answers are based on verifying the propositions given to prove
by using particular examples, without the intention of justifying the gen-
eral validity of the proposition and using empirical-inductive procedures.
Therefore, we refer to these types of answers as empirical-inductive proof
schemes.

Type 4 answers develop informal logical approaches, based on the use
of analogies, graphical tools, etc. We classify these types of answers as
informal deductive proof schemes.

Type 5 answers are elementary forms of deductive proofs. This ele-
mentary character is imposed by the simplicity of the problems that are
posed. However, the answers follow a formal approach, more in agree-
ment with the transformation rules of a symbolic and algebraic language,
in which the mathematical terms operate, than to the specific meaning of
these terms. That is why we call them formal deductive proof schemes.

It is necessary to point out that students might use different schemes
when solving more complex problems. We have checked this fact in a qual-
itative research carried out in the course of the 2000–2001 academic year.
In this study, we posed the following problem to a sample of university
students: Prove that the sum of the interior angles of a triangle is 180◦.
We found that the same student could start with an empirical-inductive
procedure and end up using a more or less formal deductive scheme.

We also observed that the lecturer’s instruction was effective in devel-
oping formal deductive proof schemes in the students, although empirical
inductive schemes remained and were resistant to change. Empirical in-
ductive schemes were the spontaneous type of argumentation in a high
percentage of students when they were confronted with new problems, in
which it was necessary to develop new proof strategies, different from the
learned formal procedures.

3. INSTITUTIONAL MEANINGS OF MATHEMATICAL PROOF

In this section we analyse some institutional meanings of mathematical
proof, as a preliminary step towards the study of relationships between the
institutional meanings of proof and students’ mathematical proof schemes.

From a cultural viewpoint, Wilder (1981) wrote that, “we must not for-
get that what constitutes ’proof’ varies from culture to culture, as well as
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from age to age” (p. 346). We will try to show that this relativity should be
extended to the different institutional contexts, when we are interested in
the psychological and didactic problems involved in the teaching of proof.

In this section we study the diverse meanings of proofs in the following
institutional contexts: daily life, empirical sciences, professional mathem-
atics, logic and foundations of mathematics. We recognise that it is also
possible to identify more local viewpoints where the problem of truth and
proof takes on specific connotations within these contexts. For example,
the main tendencies in the foundations of mathematics (logicism, form-
alism, intuitionism, and quasi-empiricism) hold different views about the
role of mathematical proof and the criteria for its validity (Hanna, 1995,
p. 42). However, we consider the level of analysis adopted in this article
sufficient to show the diversity of identifiable ‘proof objects’, and the vari-
ety of theory and practice firmly established with regard to mathematical
proof.

3.1. Daily life

In daily life, people normally use informal argumentations, which are situ-
ational, depending on the context and even on the subject’s own emotional
situation (Miller-Jones, 1991). This type of informal argumentation does
not necessarily produce truth, since it is based on local value consider-
ations, which lack the objective features of proof. The statement has no
absolute and universal validity; an example not following the rule will
not completely invalidate the rule, although the validity is increased when
more facts satisfying the statement are found.

According to Fernández and Carretero (1995, pp. 41–43) the main fea-
tures of this type of argumentation are:

a) It is applied to issues relevant to the person who makes the argument-
ation.

b) This argumentation is very dynamic and dependent on the situational
context.

c) It is applied to open, fuzzy and not deductive tasks.
d) It uses the daily life language, instead of a formal and symbolic lan-

guage.
e) It is used in all knowledge domains, even in mathematics and sci-

entific problems.

Students may have difficulties in distinguishing the intuitive argumenta-
tion they use in their daily life from the deductive reasoning required in
the mathematics classroom.
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Polyá (1953) studied intuitive reasoning in mathematics, considering
it to be the reasoning we use to formulate our mathematical conjectures
and calling it plausible reasoning. Garuti, Boero and Lemut (1998, p. 345)
affirm that there is a cognitive continuity between the production of con-
jectures and the construction of proofs; therefore, informal mathematical
arguments might constitute the first levels of mathematical proof.

3.2. Experimental sciences

In contrast with natural argumentation in daily life, scientific argumenta-
tion has a validating intention, which leads it to generate scientific know-
ledge, that is, rational and objective knowledge, conditioned by experi-
mental confirmation.

Scientific theories are objective models meant to represent reality. Sci-
entific models appear when we detach ourselves from our daily life and
introduce objective criteria of experimental checking. According to Fourez
(1994) the essential nature of scientific argumentation and what distin-
guishes it from the daily life argumentation is the need for experimental
proof.

Intuitive argumentation of daily life is replaced by experimental proof;
beliefs are replaced by theories, which are experimentally validated. Ac-
cording to Popper (1972), theories develop permanently and progress by
falsification of previous hypotheses.

Scientific theories are formulated using high-level mathematical lan-
guages; mathematics appears as a tool for expressing scientific facts and
mathematics argumentation takes some connotation of experimental proof
in scientific contexts.

Mathematical theories are considered to be true because they can be
proven experimentally, in different phenomenological situations, regard-
less of their formal and deductive interrelations. For some authors, for
example Kline (1980), mathematical truth should be evaluated by its ap-
plicability to the physical world; mathematics is true because it works, and
when it does not work it should be modified. According to this interpret-
ation, the usefulness in founding consolidated scientific theories is what
proves, in the end, the validity of mathematical theories.

Scientific proof, based in experimental verification, is introduced in
mathematics and induces a specific way of argumentation, which we call
empirical-inductive proof. This is a first validating step, where some par-
ticular cases of the proposition to be proved are experimentally verified.
This validation must later be complemented using deductive methods, but
it gives certain logical consistency to conjectures made by way of intuitive
procedures.
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3.3. Professional mathematics

The argumentative process that mathematicians develop to justify the truth
of mathematical propositions, which is essentially a logical process, is
called mathematical proof.

Deductive proof is the prototypical pattern of mathematical proof. For
Dieudonné (1987), validating rigor is linked to axioms and formalisation.
Nevertheless, this formalist rigor decreases in practice. Formalised proofs
become extraordinarily complex. Livingston (1987), for example, has
shown the complexity of proving the uniqueness of the identity element
in an algebraic group (e = e * e’ = e’), as compared to its triviality when
using informal argumentation. In Resnick’s opinion (1992), this explains
why contemporary mathematics is full of working proofs, that is, informal
proofs. Moreover, new strategies for mathematical validation are arising
from mathematics itself, which challenge the classical conception of de-
ductive ‘line by line’ proof, such as zero-knowledge proof, holographic
proof, visual proof, and, in general, proofs based on experimental confirm-
ations (Hanna, 1995, p. 43). These proofs are based mainly on computer
programs, and incorporate random validation procedures. As Hanna poin-
ted out (1989, p. 20), the traditional formalist conception, based on an
abstract and rigorous view of mathematics, is changing: “In the last two
decades several mathematicians and mathematical educators have chal-
lenged the tenet that the most significant aspect of mathematics is reas-
oning by deduction, culminating in formal proofs. In their view there is
much more to mathematics than formal systems. This view recognises
the realities of the mathematical practice. Mathematicians admit that their
proofs can have different degrees of formal validity – and still gain the
same degree of acceptance. Mathematicians agree, furthermore, that when
a proof is valid by virtue of its form only, without regard to its content, it is
likely to add very little to the understanding of its subject and, ironically,
may not even be very convincing”.

3.4. Logic and foundations of mathematics

In logic and foundations of mathematics the notion of proof appears linked
to deduction and formal systems. Logical argumentation is essentially a
deductive argumentation. Pure deductive argumentations take place in ax-
iomatic and formal systems. According to Garnier and Garnier and Taylor
(1996), an axiomatic system is,

a) a collection of indefinite terms and symbols;
b) syntactic rules to build sentences and formulas starting from symbols

and indefinite terms;
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c) a collection of correctly built sentences, called axioms.

The inference rules determine how the sentences representing theorems
can be deduced from axioms. In a mathematical theory proof is a se-
quence of propositions, each of which is an axiom or a proposition that
has been derived from axioms by inference rules. A theorem is a propos-
ition obtained this way using a proof. Formalisation replaces a semantic
conception of truth – as adaptation between thought and external reality –
by a syntactic conception of truth, interpreted as coherence within a certain
formal system.

The meta-language of a system is the language to describe the system,
to speak of it and investigate its properties. An important meta-linguistic
property is consistency. A system is consistent if it is free from contradic-
tions. A fundamental meta-mathematical result is Gödel’s incompleteness
theorem, which, according to Kline (1980), can be formulated saying that
if a formal theory T containing the whole number theory is consistent, then
it is incomplete. This means that there is at least one proposition of number
theory, which we can call S, such that neither S nor non-S are demonstrable
in the theory.

Gödel’s incompleteness theorem proves that for any mathematical the-
ory containing elementary arithmetic, if it is consistent, it is not complete;
hence it cannot contain all mathematical truth. That means, finally, that
mathematics cannot be limited to merely a formal system. Consequently,
mathematical truth loses its character of absolute necessity, presenting a
pragmatic value. We cannot automatically decide if an informal argument-
ation is correct or not, by a process of formal derivation, but this is rather
a question of agreement between parts, using subjective considerations of
people taking part in the proof process.

3.5. A pragmatic view of proof

There are certainly some common features in the uses of the word ‘proof’
in the different institutional contexts described, and this allows us to con-
sider proof in a general sense. But this generic, abstract, metaphysical way
of thinking should not conceal the rich and complex variety of meanings
acquired by the concept of proof, or, better, by the diversity of ‘proof
objects’ each of which is given a local meaning by the members of such
institutions. We believe it is interesting to consider not just one, but several
concepts of proof depending on the subjective and epistemological view-
point, when we are interested in the psychological and didactic problems
involved in the processes of validating mathematical propositions (Godino
and Batanero, 1998; Godino and Recio, 1997).
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By recognising this diversity of objects and meanings, we shall be in
a better position to study the components of meaning, the circumstances
of their development, the roles performed in the different contexts. In fact,
we would thus understand better the ecological relationships established
between the objects and the systemic nature of their meaning. This onto-
semantic modelization can help us take into account the cognitive conflicts
faced by anybody who is forced to participate as a subject in different
institutional contexts.

4. RELATIONSHIPS BETWEEN STUDENTS’ PROOF SCHEMES AND

INSTITUTIONAL MEANINGS OF MATHEMATICAL PROOF

One of the main current trends in mathematics education looks at the pro-
cesses of teaching and learning from a socio-cultural perspective and inter-
prets mathematical objects as cultural entities, which are socially shared.
The key idea is that the individual and the social domains of mathem-
atical knowledge are interrelated. Ernest (1994) considers these two do-
mains intrinsically linked: apart from individual and idiosyncratic pro-
cesses, people learn and build knowledge, while interacting with each other.

From an anthropological perspective, Chevallard (1992) and Godino
and Batanero (1998) consider that mathematical knowledge is developed
within institutions and hence it must be considered as a socio-cultural
product. Individuals are always members of several institutions and they
have to share their collective ways of thinking and reasoning; their experi-
ences are conditioned by the institutional context, its language and type of
social interactions.

According to this epistemological and socio-cultural framework, stu-
dents’ mathematical proof schemes should be related to the institutional
meanings of proof. This relationship can be considered as a two-way in-
fluence: i) personal schemes can be influenced by the meaning of proof
in the institutions, of which the students are members; ii) additionally, the
institutional meanings of mathematical proof emerge from the personal
schemes prevailing in these institutions.

Since students are simultaneously subjects of different institutions (daily
life, experimental science classes, mathematics classes, philosophy and lo-
gic classes, etc.), where different argumentative schemes are carried out, it
is reasonable to expect that they should have difficulties in discriminating
between the respective uses of each type of argumentation. Consequently,
we consider such institutional meanings of proof to be explanatory factors
for the subjective schemes, and therefore we suggest that they should be
taken into account and investigated in depth.
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We consider that the personal explanatory argumentation schemes could
correspond to elementary intuitive argumentations, almost without valid-
ating intention, but only with explanatory intention.

The empirical-inductive proof schemes could be related to the meaning
of mathematical proof in scientific domains, which students share in their
sciences classes. These schemes are based on the subjective conviction
given by the verification of a proposition, in various particular cases.

These experimental features, originally coming from scientific contexts,
are included in the mathematical proof. They induce ways of argumenta-
tion and personal schemes in mathematical proof which lack the validat-
ing power of deductive proof, but which serve to provide certain logical
consistence to the conjectures obtained by intuitive procedures.

The informal deductive schemes could be related to the not very elabor-
ated forms of mathematical proofs that mathematics teachers often use in
the classroom; they are argumentations with a strong intuitive component,
including visualisation (for example, proofs in differential calculus based
on graphic representations of functions).

The students’ formal deductive proof schemes could be related to the
usual ways that mathematicians and mathematics teachers use to prove in
a more rigorous way, using some type of formalism.

5. CONCLUSIONS

As a result of this study we have identified a variety of mathematical proof
schemes in students who start their careers at the University of Córdoba
(Spain) and we have related these proof schemes to different meanings
of mathematical proofs in different institutional contexts. An important
result obtained in this study is the very limited ability of these students to
spontaneously produce deductive mathematical proofs even for elementary
propositions.

It is necessary to somehow link the different meanings of proof, at
different teaching levels, thereby progressively developing, among the stu-
dents, the knowledge, the discriminative capacity and rationality required
to apply them in each case. Informal proof schemes should not be con-
sidered as simply incorrect, mistaken or deficient, but rather as facets of
mathematical reasoning necessary to achieve and master mathematical ar-
gumentative practices. The analytical arguments, which are characteristic
of mathematical proofs, are not the sole argumentation practices used by
mathematicians to convince themselves about the truth of their conjectures.
These reasoning procedures are often unfruitful, or even an obstacle, in the
creative/discovery stages of problem solving processes, in which it is al-
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lowed and even necessary to implement substantial ways of argumentation,
in particular, empirical induction and analogy. We might recall Polyá’s
words (1944, p. 116): “Mathematics presented with rigor is a systematic
and deductive science, but mathematics in gestation is an empirical and
inductive science”.

Understanding and mastering deductive argumentation by students re-
quires a development of rationality and a specific state of knowledge. It
demands “the adhesion to a problem that it is not that of the efficiency (exi-
gency of practice) but rather that of rigor (theoretical exigency)” (Balacheff,
1987, p. 170). But the construction of this rationality is a progressive pro-
cess that takes time, as well as ecological adaptations of the ‘proof object’
at different levels of teaching.
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