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Diagrams and in general the use of visualization and manipulative material play an 

important role in mathematics teaching and learning processes. Although several 

authors warn that mathematics objects should be distinguished from their possible 

material representations, the relations between these objects are still conflictive. In 

this paper, some theoretical tools from the onto-semiotic approach of mathematics 

knowledge are applied to analyse the diversity of objects and processes involved in 

mathematics activity, which is carried out using diagrammatic representations. This 

enables us to appreciate the synergic relations between ostensive and non-ostensive 

objects overlapping in mathematical practices. The onto-semiotic analysis is 

contextualised in a visual proof of the Pythagorean theorem. 

INTRODUCTION 

The use of different representations, visualizations, diagrams, manipulative materials, 

are proposed to favour mathematics learning by assuming that such materials make up 

representations of mathematics concepts and of the structures in which they are 

organised. It is supposed that the use of material representations is necessary, not only 

to communicate mathematical ideas but also for their own construction. However, the 

relations between representations, objects and construction of meanings are still 

conflictive. This issue is key for mathematics education since “any didactic theory, at 

one moment or another (unless it voluntarily wants to confine itself to a kind of naïve 

position), must clarify its ontological and epistemological position” (Radford, 2008, p. 

221). 

Researches in diagrammatic reasoning and about the use of visualizations in 

mathematics education do not usually deal with the type and diversity of mathematical 

objects. In this paper, this problem is faced using some theoretical tools from the 

onto-semiotic approach (OSA) (Godino, Batanero, & Font, 2007; Font, Godino, & 

Gallardo, 2013). Mathematical objects are considered to be abstracts whereas diagrams 

are specific and perceptible. It is necessary not confuse them, but the relationship 

between both types of objects are not dealt with explicitly. This situation is not strange 
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since to clarify what abstract objects are, and their relationship with the empirical 

world, is a full-scale philosophical and psychological problem, which is addressed 

from different paradigms and theoretical frameworks.  

In the OSA it is assumed that mathematics is a human activity (anthropological 

postulate) and that the entities involved in this activity come or emerge from the 

actions and discourse through which they are expressed and communicated (semiotic 

postulate). The epistemological, semiotic, and educational problem that interests us is 

to clarify the relationship between the visual, diagrammatic or iconic representations, 

and the non-ostensive mathematical objects that necessarily are involved.  

In the following section, some characteristic features of the diagrammatic reasoning 

that point out the problem mentioned are described, that is the gap between the 

representation and the mathematical object represented. Then, the notion of 

ontosemiotic configuration of practices, objects and processes is summarised. This 

theoretical tool is used to analyse the diagrammatic reasoning in a visual proof of the 

Pythagorean theorem. In the final section, some reflections about the type of 

understanding that the onto-semiotic approach to mathematical knowledge might 

provide to diagrammatic reasoning are included. 

DIAGRAMMATIC REASONING  

In mathematics education, talking of diagrammatic reasoning means entering into the 

field of Peircean Semiotics (Dörfler, 2005; Bakker & Hoffmann, 2005; Rivera, 2011), 

although the use of diagrams as a resource of thought and scientific work is also found 

in other fields and disciplines (Shin & Lemon, 2008). 

A double conception about the notion of diagram is found: one wider conception, in 

which any type of inscription that makes use of the spatial positioning in two or three 

dimensions (right, left, forward, backward, etc.) is a diagram (geometric figures, 

graphs, conceptual, etc.). Another more restricted conception requires being able to 

carry out specific transformations, combinations or constructions with these 

representations, according to certain specific syntactic and semantic rules. In this 

research report, it is justified why this second approach should be retained. 

Diagrammatic reasoning involves three steps (Bakker & Hoffmann, 2005, p. 340):  the 

first step is to construct a diagram (or diagrams) by means of a representational system; 

the second step is to experiment with the diagram (or diagrams); the third step is to 

observe the results of experimenting and reflecting on them. 

Duval (2006) attributes an essential role not only to the use of different systems of 

semiotic representation (SSR) for mathematics work but also to the treatment of the 

signs within each system and the conversion between different SSR:  

The role that signs play in mathematics is not to be substituted for objects but for other 

signs! What matters is not representations but their transformation. Unlike the other areas 

of scientific knowledge, signs and semiotic representation transformation are at the heart 

of mathematical activity. (Duval, 2006, p. 107) 
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Dörfler (2005) recognises that diagrams can make up a register of autonomous 

representation to represent and produce mathematics knowledge in certain specific 

fields; however, it is not complete. It requires to be complemented by 

conceptual-verbal language in order to express notions like: continuity and 

differentiability; impossibility that specific objects exist; using the quantifiers „for all‟, 

„each one‟ and „there are‟.  

For our purposes here, it is very important to make a clear distinction between "diagrams" 

and all kinds of representations, visualizations, drawings, graphs, sketches, and 

illustrations as widely used in professional mathematics and in mathematics education as 

well. Although these might be diagrams in the specific sense used here, this is mostly not 

the case. This is due to the lack of the constituting operations by which an inscription or 

visualization becomes only a diagram. (Dörfler, 2005, p. 58) 

Shin & Lemon point out another problem related to the use of diagrams: 

A central issue, if not the central issue, was the generality problem. The diagram that 

appears with a Euclidean proof provides a single instantiation of the type of geometric 

configurations the proof is about. Yet properties seen to hold in the diagram are taken to 

hold of all the configurations of the given type. What justifies this jump from the particular 

to the general? (2008, section 4.1) 

Sherry (2009) adopts an anthropological perspective on the role of diagrams in 

mathematics argumentation, which involves an objectification of the empirical reality. 

This perspective differs from the Peircean semiotic, according to which diagrams are 

an essential means in the process of hypostatic abstraction. Sherry analyses the role of 

diagrams in mathematics reasoning (geometric and numerical – algebraic) without 

resorting to the introduction of abstract objects and relying on a Wittgensteinian 

perspective of mathematics. “Recognizing that a diagram is just one among other 

physical objects is the crucial step in understanding the role of diagrams in 

mathematical argument” (Sherry, 2009, p. 65).  

In this position, the author avoids recurring to abstract conceptions which are 

conceived in an empirical-realistic way (hypostatic abstraction) in order to understand 

them as socially agreed grammatical rules, about the use of languages through which 

we describe our worlds (material or immaterial). 

I have emphasized that diagrammatic reasoning recapitulates habits of applied 

mathematical reasoning. On this view, diagrams are not representations of abstract objects, 

but simply physical objects, which are sometimes used to represent other physical objects. 

(Sherry, 2009, p. 67) 

ONTO-SEMIOTIC CONFIGURATIONS  

In the OSA framework, it is proposed that six types of objects intervene in mathematics 

practice, which can be contemplated from five dual points of view (figure 1) (Font et 

al., 2013). The non-ostensive (immaterial) entities: conceptual, propositional and 

procedural, are conceived as rules. The Wittgenstein‟s anthropological view is 

assumed, according to which concepts, propositions and mathematics procedures are 
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empirical propositions, which have been socially reified as rules. Sherry clearly and 

synthetically describes this Wittgensteinian conception of mathematical objects:  

In order for an empirical proposition is harden into a rule, there must be overwhelming 

agreement among people, not only in their observations, but also in their reactions to 

them. This agreement reflects, presumably, biological and anthropological facts about 

human beings. An empirical proposition that has hardened into a rule very likely has 

practical value, underwriting inferences in commerce, architecture, etc. (Sherry, 2009, 

p 66) 

 

Figure 1: Objects that intervene in mathematical practices (Font et al., 2013, p. 117) 

Both the dualities and the configurations of primary objects may be analyzed from the 

process/product perspective. The objects of a configuration (problems, definitions, 

propositions, procedures and arguments) emerge through the respective mathematical 

processes of communication, problematization, definition, enunciation, development 

of procedures (algorithms, routines, etc.) and argumentation. For their part, the 

dualities give rise to the following cognitive/epistemic processes: 

institutionalization-personalization; generalization-particularization; analysis / 

decomposition - synthesis / reification; materialization / concretion - idealization / 

abstraction; expression / representation - signification.  

Behind diagrammatic reasoning, and the use of manipulative teaching materials, there 

is an implicit adoption of an empirical – realistic position about the nature of 

mathematics. This position does not recognize the essential role of language and the 

social interaction in the emergence of mathematical objects. To a certain extent, it is 

supposed that the mathematical object “is seen”, it is hypostatically detached from 

empirical qualities of things collections. Against this position, the anthropological 

conception of mathematics proposes that concepts and mathematical propositions 

should be understood, not as hypostatic abstractions of perceptual quality, but as 

regulations of the operative and discursive practices carried out by people in order to 

describe and act in the social and empirical world in which we live.  
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This anthropological way of understanding abstraction, that is, the emergence of 

general and immaterial objects forming mathematical structures, has important 

consequences for mathematics education since mathematics learning should take place 

through students‟ progressive participation in the mathematics language games. For 

example, in the current introduction of dynamic software in school is necessary to 

evolve their use according moments of exploration, illustration and demonstration 

(Lasa & Wilhelmi, 2013), which allow an understanding, reuse and construction of 

new mathematical knowledge. In this way, dialogue and social interaction take on an 

important role, in comparison with the mere manipulation and visualization of 

ostensive objects. 

ONTO-SEMIOTIC CONFIGURATION IN A VISUAL TASK 

In this section, the types of practices, objects and processes put at stake in the statement 

and demonstration of the Pythagorean theorem are analysed. Usually it is presented as 

a visual or "without words" demonstration. It is shown that, indeed: “picture-proofs 

don‟t show their results on their sleeve, as it were; it‟s necessary to study them for a 

while, before they reveal their treasure” (Sherry, 2009, p. 68). 

Task 

What is the relationship between the areas of the figures shaded A and B? 

 

Figure 2: A visual proof of the Pythagorean theorem 

The following sequence of operative and discursive practices is one possible answer
2
: 

1.  We assume that the representations in Figure 2 are squares and right triangle, and 

the lengths of their sides are indeterminate: a, b, c (Figure 3). 

2. The quadrilaterals formed by the outer segments of the figures A and B are 

congruent squares because the sides have equal length, (a + b).  

 

Figure 3: Metrics hypothesis needed 

3. The representations of right triangles in A and B are congruent because their sides 

are of equal length. 
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4. The shaded region in Figure A is equal to the shaded region in Figure B. This is 

because two squares of equal area are formed of four equal triangles. 

5. The shaded area in Figure A is the sum of the squares area of sides a and b, 

respectively, a
2
 + b

2
. 

6. The shaded area in Figure B is the square's area of side c, c
2
. 

7. The shaded regions are interpreted as areas of the squares whose sides are the legs 

and hypotenuse of the triangle, respectively (Figure 4). 

 

Figure 4: Determination of the Pythagorean theorem 

8. Then, the area of the square on the hypotenuse is equal to the sum of the squares 

areas on the other two sides: c
2  

= a
2
 + b

2
. 

Configuration of objects and meanings 

In the first column of the Table 1, the expressions in ordinary language (sequential) is 

summarised; such expressions are added to the diagrams to produce the justification 

and explanation necessary of the theorem. In the second column, the system of 

„non-ostensive objects‟ is included. In addition, how the „ostensive / non-ostensive‟ 

duality, and the “example / type” (particular / general) duality are linked to the 

intervention of concepts, propositions, procedures, and arguments are shown. 

OSTENSIVE OBJECTS 

(Means of expressions) 

NON - OSTENSIVE OBJECTS  

(Concepts, propositions, procedures, 

arguments) 

Task statement: 

What is the relationship between the 

areas of the figures shaded A and B? 

(Figure 2) 

Concepts: area (extension of a plane region), 

sum of areas; comparison of areas. 

Particularization: these concepts are 

particularized to the case of the figures 

given. 

The squares, triangles and the relationships 

between the areas, are generic. 

1. We assume that the representations 

in Figure 2 are squares and right 

triangle, and the lengths of their sides 

are indeterminate: a, b, c (Figure 3). 

Concepts: square, right triangle, side, 

indeterminate measurement of length. 

Particularization: these concepts are 

particularized to the case of the figures 
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 given. 

The figures refer to square and triangle 

generics. The lengths are generic. 

2. The quadrilaterals formed by the 

outer segments of the figures A and B 

are congruent squares because the 

sides are of equal length, (a + b). 

Proposition: the two exterior squares are 

congruent. 

Argumentation: because the sides of the 

squares have the same length. This is (a+b). 

The proposition is general; it is valid for the 

“examples” (figures) and for any “type”. 

This is an essential hypothesis in the 

explanatory process. 

...  

8. Then, the square's area of the 

hypotenuse is equal to the sum of the 

squares areas of the other two sides: c
2  

= a
2
 + b

2
. 

Proposition: thesis (Pythagorean theorem) 

Justification: steps 1 to 7. It is geometrically 

interpreted (comparison of areas). It is also 

interpreted in arithmetic / algebraic terms 

(numerical relationships). 

Table 1: Configuration of objects and meanings 

Our analysis agrees with and supports Sherry´s position about the use of diagrams in 

mathematics work: rather than building an accurate diagram, what matters is the 

mathematical knowledge involved, which is not visible anywhere; it is not in the 

diagrams themselves. In the case of using dynamic software, it is essential to progress 

from moments of illustration (where objects can be manipulated with great precision) 

to moments of demonstration (where objects are not essential, rather the construction 

process of diagrams). This way, features of specific examples can progress towards the 

corresponding structural type. In general, the diagram supports or makes possible the 

necessary process of particularization of the general rule; it makes the conceptual 

object intervene in order to participate in a practice from which another new 

conceptual object will emerge (in our example, Pythagorean theorem). 

FINAL CONSIDERATIONS 

The function that we attribute to the diagrams helps to surpass ingenuous empiricist 

positions about the use of manipulatives and visualizations in the processes of 

mathematics teaching and learning: there is always a cohort of intervening non 

material objects which are essential to solve these situations accompanying the 

necessary materializations that intervene in the situations-problems and the 

corresponding mathematics practices. However, this layer of material objects should 

not prevent seeing the layer of immaterial objects that really make up the conceptual 

system of institutional mathematics. Both layers are interwoven and to a certain extent 
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are inseparable. Mathematics teacher should have knowledge, understanding and 

competence in order to discriminate the different types of objects that intervene in 

school mathematics practice, based on the use of different systems of representations 

and being aware of the synergic relations between the same. 
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