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Abstract: In this article, we present the results of the administration of a questionnaire 
designed to evaluate the understanding that civil engineering students have of the 
antiderivative. The questionnaire was simultaneously administered to samples of 
Mexican and Colombian students. For the analysis of the answers, we used some 
theoretical and methodological notions provided by the theoretical model known as 
Onto-Semiotic Approach (OSA) to mathematical cognition and instruction. The results 
revealed the meanings of the antiderivative that are more predominantly used by civil 
engineering students. Also, the comparison between the mathematical activity of 
Mexican and Colombian students provides information that allows concluding that the 
meanings mobilized could be shared among their communities and are not particular of 
their classroom or university. 
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Background 
 

Mathematics education of engineering students is a topic that, for some years, has been 
of growing concern among researchers in the field of Mathematics Education as well as 
university mathematics teachers and professional associations (Bingolbali, Monaghan, 
& Roper, 2007). In this regard, there have been several studies that have dealt with the 
issue of how to address different mathematical notions in engineering contexts 
(Gnedenko & Khalil, 1979; Hieb, Lyle, Ralston, & Chariker, 2015; Neubert, 
Khavanin, Worley, & Kaabouch, 2014; Randahl, 2012; Sonnert & Sadler, 2014). The 
suggestions given by these studies focused on the type of problems used to introduce 
mathematical notions (real-life problems, modelling of real situations in engineering 
contexts, etc.), the impact of technological resources and textbooks for the teaching of 
mathematics to engineers, and even motivational factors. As shown in Artigue, 
Batanero, and Kent (2007), other works evoke the study of the differences in the  way 
of thinking mathematics between mathematics and engineering students 
(Bingolbali et al., 2007; Jones, 2015; Maull & Berry, 2000). 

This article aims at identifying and characterizing the meanings of the 
antiderivative that engineering students, specifically students from Civil Engi- 
neering Programs, use in their mathematical practices in connection to certain  tasks 
assigned to them on this mathematical notion. For this purpose, we administered a 
questionnaire to two groups of civil  engineering  students,  one  from a Mexican 
University and another from a Colombian  University.  The analysis of the answers  
to  the  questionnaire  shows  which  are  the  meanings  that future civil engineers 
give to the antiderivative and how these relate to the partial meaning that make up 
the holistic meaning of this mathematical notion (Pino-Fan, Godino, & Font, 2016). 

Regarding the antiderivative notion, few studies have been conducted in the context of 
other programs different from mathematics (e.g. Jones, 2015), and the treatment that is 
frequently given to this mathematical object is from the point of view of the integral 
(Contreras, Ordóñez & Wilhelmi, 2010; Crisóstomo, 2012; Jones, 2013). However, the 
importance of this mathematical object has been acknowledged and has been given more 
prominence and identity in research in Mathematics Education (e.g. Hall, 2010; Sealey, 
2006; Sealey, 2014). Thus, research conducted on the antiderivative has focused on the 
way students reflect on the rules of integration (Metaxas, 2007; Posso, Uzuriaga & 
Martínez, 2011), its historical-epistemological meanings (Gordillo & Pino-Fan, 2016), 
and the use of technology for its introduction and study (Ponce-Campuzano & Rivera- 
Figueroa, 2011), including an approach from the perspective of the theory of objectifi- 
cation that involves a continuous development of the meanings according to the elements 
used in class (Kouropatov & Dreyfus, 2014; Swidan & Yerushalmy, 2014). 



 

 

 

But, why is a study on the different meanings of the fundamental notions of calculus 
relevant? More specifically, why is it important to study the meanings of the antide- 
rivative taught and learnt in engineering programs? To answer these questions, it is 
advisable to do a brief history review. At the beginning of the XX century, the 
advantages, from the point of view of rigour, present in the arithmetical version of 
calculus of Cauchy-Weierstrass, caused mathematicians to prescind from any other 
version of calculus, and particularly, any allusion to evanescent or infinitely small 
quantities. From then on, infinitesimal notions were no longer used in calculus text- 
books. As a consequence, courses of calculus were organized with the notion of limit as 
a central concept (Arcos & Sepúlveda, 2014). In non-standard analysis, the original 
method of reasoning by means of infinitesimals is validated and vindicated. According 
to Arcos (2004), the method of limits is laborious, not very intuitive and far from 
reality, but it is by far the most commonly used nowadays. For this reason, this author 
offers didactical suggestions based on the non-standard analysis for the study of 
calculus because he considers that reasoning by means of infinitesimals is very 
appropriate for engineering students. According to several authors (e.g. Arcos & 
Sepúlveda, 2014), the mathematics of infinitesimals can be better linked to modelling 
and represents an introduction to calculus that reacts better to the mathematics that 
engineers have to use in their profession. 

The different meanings that the fundamental notions of calculus have had throughout 
history show the complexity of these mathematical objects. For example, and in relation to the 
formal notion of limit, Jones (2013) points out: ‘While the limit is fundamental to calculus, the 
derivative and the integral have additional layers of meaning above and beyond the limit, as 
well as meanings that do not necessarily require accessing the concept of a limit’ (p. 122). 

Such complexity involves a relevant problem: What are the different meanings of 
the fundamental notions of calculus (such as the antiderivative) that engineers should 
be taught? Which of these meanings have future engineers learnt? Our study addresses 
a partial aspect of this discussion, by inquiring into the features of the personal 
meanings of the antiderivative that engineering students have, after a process of 
conventional teaching. 

In the next section, we present the theoretical notions and the methodology that we 
used to conduct our study. Then, in the third section, we conduct the analysis of the 
answers given by the Mexican and Colombian students and discuss about the base of 
comparison of the results. Finally, in the section of final reflections, we comment about 
the main contributions and limitations of our study, and identify additional lines of 
investigation. 

 
 
Theoretical Framework 

 
In order to conduct this study, we considered the theoretical model known as the Onto- 
Semiotic Approach (OSA) to mathematical cognition and instruction (Godino, Batanero, & 
Font, 2007). In OSA, the notion of mathematical practices plays and important role in the 
teaching and learning of mathematics. OSA assumes certain pragmatism when considering 
mathematical objects as entities that emerge from the practices conducted in a field of 
problems (Godino & Batanero, 1994). Font, Godino and Gallardo (2013) points it out this 
way, ‘Our ontological proposal is derived from mathematical practice, this being the basic 



 

 

 

context in which individuals gain their experience and in which mathematical objects emerge. 
Consequently, the object here acquires a status derived from the practice that precedes it.’ (p. 
104). In this sense, in OSA, the meaning of mathematical objects is conceived from a 
pragmatic-anthropological perspective which considers the relativity of the context in which 
these are used. In other words, the meaning of a mathematical object can be defined as the 
system of operative and discursive practices that a person (or an institution) develops in order 
to solve certain type of situations problems in which such object intervenes (Godino & 
Batanero, 1994). Thus, the meaning of a mathematical object can also be considered from 
two perspectives, institutional and personal. 

In order to conduct a ‘finer’ and more systematic analysis of the mathematical 
practices developed regarding certain problems, OSA introduces a typology of primary 
mathematical entities (or primary mathematical objects) that intervene in the systems of 
practices: problems, linguistic elements, definitions, propositions, procedures and ar- 
guments. These primary mathematical objects are related among themselves forming 
nets of intervening objects that emerge from the systems of practices, which in OSA are 
known as configurations. These configurations can be epistemic (institutional nets of 
primary mathematical objects) or cognitive (personal nets of primary mathematical 
objects). We use the notion of cognitive configuration to analyse the mathematical 
practices performed by civil engineering students regarding the solutions to the tasks of 
the questionnaire. Within OSA, such notion—cognitive configuration—is essential for 
the study of understanding because the pragmatic positioning of OSA leads to consider 
understanding, basically, as a competence and not as a mental process; in other words, 
it is considered that a subject understands a certain mathematical object when he/she 
uses it in a competent manner in different practices. In this way, understanding, as stated 
by Pino-Fan (2014), has to do with the relations—seen from the perspective of 
mathematical congruence—that have to be established among all the elements that 
intervene in the cognitive configuration that the subject activates to solve certain 
situations/problems. 

That said, in the framework of OSA and in relation to the complexity of the object 
integral, several works have been developed, which somehow, are  related to the 
antiderivative. For example, Contreras, Ordóñez and Wilhelmi (2010) consider the 
following epistemic configurations: (1)  geometric,  (2)  the  result  of  a process of 
change, (3) inverse of the derivative, (4) approximation to limit, 
(5) generalized (Lebesgue, Riemann, etc.), (6) algebraic and (7) numerical methods. 
On the other hand, Crisóstomo (2012), in his doctoral dissertation considers—based 
on the net of epistemic configurations suggested by Contreras      et al. (2010)—useful 
to differentiate eight different  types  of  configurations, which he calls Intuitive, 
Primitive, Geometric, Summational,  Approximated, Extra mathematical, 
Accumulated and Technological, placing the Fundamental Theorem of Calculus 
(FTC) as a primary object that is central to the epistemic configuration called 
primitive, although it also appears in the geometric, sum- mational, extra mathematical 
and technological configurations. 

It should be stressed that the study carried out in previous works about the antiderivative is 
indirect and always from the point of view of the integral. For example, the contributions of 
Sealey (2006, p. 46) are not taken into consideration, when he points out: 

(…) many real-world applications involve functions that do not have an antideriv- 
ative that can be expressed in terms of elementary functions. For example, the 



 

 

 

antiderivative of the function f ðxÞ ¼ ex2 cannot be expressed in terms of elementary 
functions. Thus, the Fundamental Theorem of Calculus could not be applied, and other 

methods for evaluating the definite integral, such as Riemann sums would be needed. 
What was stated above would once again lead us to consider the other meanings (or 

layers of meanings) mentioned by Jones (2013), and that, in the case of the antiderivative, 
we have characterized with the study of Gordillo and Pino-Fan (2016). In this work, the 

main role is given to the antiderivative, which is granted identity as a research object, 
differentiating it from the notion of integral (Wagner, 2015), taking into account the 
diverse partial meanings of reference of the antiderivative for the creation of the 

questionnaire. 
 
 

Methodological Aspects 
 

This study uses, mainly, a qualitative methodology (Cohen, Manion, & Morrison, 2011), 
since it is an exploratory study that considers the observation of qualitative variables (the 
type of cognitive configuration connected to the practices on antiderivative). In addition, 
descriptive statistics are used when analysing percentages for quantitative variables 
(answers’ degree of accuracy: correct answers, partially correct answers and incorrect 
answers). 

For the study of the qualitative variable, the students’ protocols of answers were 
analysed, and the primary mathematical objects that intervened in the cognitive con- 

figurations related to their mathematical practices were described in a systematic way. 
For data gathering purposes, a questionnaire was administered (and will be described 

next), which was specifically designed to evaluate university students’ understanding of 
the antiderivative. The questionnaire was administered in one session of 2 h, in different 
days in each of the two participant universities. Prior to these sessions, and in order to 
motivate students, they were informed that they would be part of a research study, and 

their anonymity was guaranteed by giving the possibility to write ‘Subject-Male’ or 
‘Subject-Female’ to those who did not want to put their names on the test. 

 
The Questionnaire 

 
The questionnaire that we used to gather data was designed to evaluate students’ 
understanding on antiderivative and is composed of 11 tasks (Gordillo, Pino-Fan, Font, 
& Ponce-Campuzano, 2015). Each of these tasks is closely related to one of the four 
partial meanings of the antiderivative that were identified through a historical- 
epistemological study that aimed at reconstructing the ‘holistic meaning of reference’ 
for such mathematical object (Gordillo & Pino-Fan, 2016). Figure 1 shows a summary 
of the characteristics and goals pursued by each of the tasks. A complete analysis of the 
content evaluated in each task, as well as the identification of the possible difficulties 
that students may encounter to solve them, can be found in Gordillo et al. (2015). 

 
Subjects and Context 

 
The questionnaire was administered to an intentional sample of Civil Engineering 
students, specifically, two groups. The first group was composed of 23 students of 



 

 

 

Task Expected mathematical 
practice Representation activated Partial meaning 

activated 

Task 1: 
Meanings of the antiderivative 

Description of the personal 
meanings and definitions for the 

antiderivative 
Verbal/Written Global 

Task 2: 
Structured Synoptic model 

Relation of the antiderivative to 
other mathematical objects of 

calculus 
Concept Map/Graph Global 

Calculation of the primitive 
function (parts A and B) 

Construction of a family of 
functions from a derivative 

function 

Symbolic, graphic and 
tabular Differential-sum 

Task 4: 
Graphic exploration of the 

antiderivative 

Treatment of the graphic 
representation of the 

antiderivative 
Graphic Tangent- squaring 

Task 5: 
Difference integral- 

antiderivative 

Description of the conceptual 
differences between the notions 
of integral and antiderivative. 

Verbal, Written and 
symbolic Elementary functions 

Task 6: 
Elementary functions 

Identification of the derivative 
function as elementary function 

Verbal, Written and 
symbolic Elementary functions 

Task 7: 
Rules of ‘antiderivatives’ 

Identification of the 
antiderivative from a basic rule 

of derivation 
Symbolic Tangents- squaring 

Task 8: 
Notations of a derivative 

function 

Identification of a way to denote 
a derivative function Symbolic Tangents- squaring 

Task 9: 
Applications of the 

antiderivative in Economy 

Application of the mathematical 
object antiderivative in 

Economics sciences 

Verbal, Written and 
symbolic Tangents- squaring 

Task 10: 
Solving of ordinary differential 

equations 

Use of the antiderivative for 
solving differential equations 

Verbal, Written and 
symbolic Fluents- Fluxions 

Task 11: 
Applications of the 

antiderivative in Physics 

Application of the mathematical 
object antiderivative in context 

of physics 

Verbal, Written and 
symbolic Fluents- fluxions 

Fig. 1 Summary of the characteristics of the tasks of the questionnaire 
 
 
 

the Civil Engineering Program of the Faculty of Environment and Natural Resources of 
the Universidad Distrital Francisco José de Caldas in Colombia. The second group was 
composed of 23 students of the Civil Engineering Program of the Faculty of Engineer- 
ing of the Universidad Autónoma de Querétaro in Mexico. An essential requisite for the 
selection of the students was that, at the moment of responding to the questionnaire, 
they had taken courses of Integral Calculus. This aspect was fulfilled by the 46 students 
who took the test. 

It should be noted that the role of the authors was limited to the administration of the 
questionnaire, the authors had never taught these students, nor did they have any link 
with the professor who held the courses at the time of the administration of the 
questionnaire. 

 
 

Analysis of Data 
 

In this section, we present the analysis of the answers given by the students of the two 
groups, Mexican and Colombian. For the analysis of the quantitative variable, we 
assigned the labels 2, 1, and 0, depending on whether the answers were correct, 
partially correct or incorrect, respectively. Thus, the highest score that a student could 
obtain by answering all the questions correctly was 24 points. The first study that we 
conducted with the variable level of accuracy was done in order to determine if there 



 

 

 

were significant differences between the Colombian group (Group 1) and the Mexican 
group (Group 2). For that purpose, we used the statistical package IBM SPSS (version 
22) to conduct a comparison between independent samples. The results of this com- 
parison are presented in Table 1. 

As shown in Table 1, in order to verify if there were significant statistical differences 
between the groups under study, a parametric hypothesis test of analysis of variance 
was used (ANOVA), which allowed us to compare average scores of the two samples. 
By means of this ANOVA test to compare the averages, we found that, with a degree of 
confidence of 95%, there were no significant differences between the average scores of 
the two groups of engineering students. 

Therefore, since there were no statistically significant differences found between the 
two groups, for the quantitative analysis of the results (next section), the 46 students 
will be considered as one single sample. 

For the analysis of the qualitative variable, we used the notion of cognitive config- 
uration, which allowed us to describe in a systematic way the primary mathematical 
objects (linguistic elements, definitions, propositions, procedures and arguments) that 
form the mathematical practices of the students, in connection to the tasks of the 
questionnaire. 

 
Analysis of the Answers of the Mexican and Colombian Engineering Students 

 
In this section, we present the results of the quantitative and qualitative analysis of each 
of the tasks of the questionnaire. 

 
Task 1: Meanings of the Antiderivative 

 
Given the nature of this first task, only correct answers (answers in which at least one of the 
partial meanings of the antiderivative was expressed in verbal/written form) and incorrect 
answers (answers in which any of the partial meanings of the antiderivative were enunci- 
ated) were considered. The students did not have difficulties solving the task, answering 
82.6% correctly. Table 2 shows a summary of answers provided by the students. 

As shown in the table above, a high percentage of Mexican students (13) as well as 
Colombian (11) answered that the antiderivative is ‘the inverse process of derivation’. 
This first general approach to the conceptions that students have of the antiderivative 
shows that more than half of them (52.2%) think of the antiderivative as a procedure 
(operation) that allows to find the ‘original function’ from which certain derived 
function comes from. Out of the 46 students, only one student from Mexico answered 

 

Table 1 Statistical summary for the total scoring by groups 
 

Group N Average Standard 
deviation 

Standard error Confidence 
the average 

interval for 
at 95% 

Minimum Maximum 

     Lower limit Upper limit   

1 23 14.087 3.1754 0.6621 12.714 15.460 9.0 21.0 
2 23 14.000 3.3166 0.6916 12.566 15.434 7.0 20.0 
Total 46 14.043 3.2108 0.4734 13.090 14.997 7.0 21.0 
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Table 2 Frequencies and percentages for the type of cognitive configuration activated in task 1 
 

Types  of cognitive configuration Frequency by group Total frequency % 
 

 1 2  

Family of functions 0 1 1 2.2 
‘Inverse process’ of derivation 11 13 24 52.2 
Primitive of a function 7 1 8 17.4 
Indefinite integral 0 5 5 10.8 
Absence of meaning 5 3 8 17.2 
Total 23 23 46 100 

 
 

that the antiderivative is a ‘family of functions’. The solutions that we have labelled as 
‘absence of meaning’, which refer to incorrect answers from the point of view of the 
level of accuracy, are answers in which the students did not give any meaning to the 
antiderivative, providing answers of the type ‘the antiderivative is the area below the 
curve’, ‘the antiderivative is obtained from the fundamental theorem of calculus’, ‘the 
antiderivative is a function f of f = f′’, ‘the antiderivative is a mathematical form through 
which some real life problems can be solved’. 

 
Task 2: Structured Synoptic Model 

 
Regarding the goals that we pursued with these tasks, analysing relations, links and 
connections that students establish between the antiderivative and other mathematical 
objects only correct and partially correct answers were considered for this task. Table 3 
shows the results regarding the level of accuracy of the answers to task 2. 

‘Partially correct’ answers were those in which the students established a relation 
between at least five of the linguistic elements provided (indefinite integral, dy, velocity, 

derivative, integral, area between two curves, f′(x), antiderivative, ∫b f x dx, definite 
integral, fundamental theorem of calculus). An answer was considered as ‘correct’ if a 
relation was established among at least ten of the expressions provided. Regarding the 
type of relations established, it was possible to classify them into three types (Table 4). 

The type of ‘synoptic-basic’ answers refers to those answers in which only few of 
the linguistic elements provided were related, and the sense or direction of the 
connection was not provided nor justifications given for them. The label ‘synoptic- 
intermediate’ refers to answers in which at least ten of the expressions given were 
related and the sense and direction of the connection, and justifications for such 
connections were provided; however, no differences were found between the integral 
and the antiderivative. On the other hand, the answers that we have categorized as 
‘synoptic-advanced’, apart from establishing connections in a similar way as in the 

 
 

 

Table 3 Frequencies and per- Level of accuracy Total frequency % 

centages for the level of accuracy    
for task 2 Correct 13 28.3 

Partially correct 33 71.7 
Total 46 100 

 



 

 

 

Table 4 Frequencies and percentages for the type of cognitive configuration activated in task 2 

Types  of cognitive configuration Frequency by group Total frequency % 

1 2 

 
 
 
 
 
 

answers of the previous category, differences between the notions of integral and 
antiderivative are also found and justified. The answers given to this task once again 
provide evidence of the conception that most students have about the antiderivative as 
the inverse process of derivation, and the equivalence that they establish between the 
indefinite integral and the antiderivative. 

 
Task 3: Calculation of the Primitive Function 

 
Task 3 was composed of two parts. For the first part, part A, we considered as correct 
all the answers in which a valid symbolic expression was provided for f(x), while 
incorrect answers were all the answers that did not provide valid symbolic expressions 
for f(x). For part B, all the answers which provided a second expression for f(x), 
different from the one given in part A and with valid justifications, were considered as 
correct. All the answers in which it was explicitly or implicitly mentioned that it was not 
possible to find a second expression for f(x) were considered as incorrect. 

The students did not have problems to provide a symbolic expression for f(x) in part 
A of the task, with 87% (40) of them giving a correct answer. However, similar to what 
happened in the study of Pino-Fan (2014), the students had more difficulties answering 
part B of the task, with 50% (23) of them giving a second valid expression for f(x) 
different to the one provided in part A. Tables 5 and 6 show the frequencies and 
percentages of the types of cognitive configuration activated in the answers to parts A 
and B of the task. 

We could identify two types of cognitive configurations from the answers provided 
by the students to part A of the task. The first type ‘graphic-technical’ refers to the 
answers in which, from the data given in the table, a graphic representation is provided 
from which the algebraic expression is obtained (graphic and symbolic linguistic 
elements, respectively) for the derivative. Subsequently, an expression for f(x) is found 

 
Table  5   Frequencies and percentages for the type of cognitive configuration activated in task 3-A  

Types  of cognitive configuration Frequency by group Total frequency % 

Synoptic—Basic 13 18 31 67.4 
Synoptic—Intermediate 7 2 9 19.6 
Synoptic—Advanced 3 3 6 13.0 
Total 23 23 46 100 

 

 1 2  

Graphic-technical 1 1 2 4.4 
Numeric-technical 17 21 38 82.6 
There is no solution 5 1 6 13.0 
Total 23 23 46 100 
 



 

 

 

Table 6  Frequencies and percentages  for the type of cognitive configuration activated in task 3-B 

Types  of cognitive configuration Frequency by group Total frequency % 

 
 
 
 
 
 
 
 
 
 

from the argumentations and procedures centred on the ‘rules’ (propositions) of 
derivation. The second type of cognitive configuration, ‘numeric-technical’, refers to 
the answers in which a pattern (propositions) that allows establishing the rule of 
correspondence that defines the derivative (definition) is determined from the data 
provided in the table. Later, from the argumentations and procedures centred on the 
rules of derivation, an expression for f(x) is found. 

Regarding the cognitive configurations connected to the answers to part B of the 
task, we found three types. The first type, ‘wrong interpretation of the uniqueness of the 
derivative’, are answers in which the students show a wrong conception about the 
uniqueness of the derivative at a point and the derived function, providing answers of 
the type ‘it is not possible to find another expression for f(x) because for f′(x) there is 
one and only one f(x), and vice versa’. The second type of configuration, ‘equivalent 
functions’, is related to the answers in which, explicitly or implicitly, by means of the 
use of equivalent functions (concept/definition), some algebraic operations are 
developed (procedures that serve as arguments) to show that it is not possible to find 
another different function. The third type of cognitive configuration, ‘advanced 
solution’, was activated in answers in which the procedures and their justifications 
explicitly establish a connection among concepts such as antiderivative, the 
fundamental theorem of calculus, rules of integration, etc., to point out with the 
proposition ‘another expression for f(x) can be any member of the family of functions 
f(x)= x2 + C’, that it is, indeed, possible to find another expression for f(x). As we can 
observe, 50% of the students (12 Colombian and 11 Mexican) mobilized the third type 
of configuration to provide their answers. Regarding the antiderivative, the third type 
of configuration brings associated the meaning of inverse process of derivation. 

 
Task 4: Graphic Exploration of the Antiderivative 

 
For this task, we only considered correct answers (in which the elements that belong to 
the family of the antiderivative were correctly identified and the way of finding them 
was justified) and incorrect answers (in which the graph provided did not correspond 
with the elements of the family of antiderivative for the function provided graphically). 
Task 4 represented a higher level of difficulty for the students, with only 41.3% (19) 
answering correctly. Among the mathematical practices that the students performed as 
part of their answers, we could identify three types of cognitive configurations. Table 7 

 1 2  

Wrong interpretation about the uniqueness of the derivative 3 3 6 13.0 
Equivalent functions 4 0 4 8.7 
Advanced 12 11 23 50.0 
No solution provided 4 9 13 28.3 
Total 23 23 46 100 

 



 

 

 

Table 7 Frequencies and percentages for the type of cognitive configuration activated in task 4 
 

Types  of cognitive configuration Frequency by group Total frequency % 
 

 1 2  

Tabular interpretation of the graph 5 9 14 30.4 
Particular function 10 6 16 34.8 
Advanced 8 3 11 23.9 
No solution provided 0 5 5 10.9 
Total 23 23 46 100 

 
 

shows a summary of the results for the type of cognitive configuration activated in the 
answers to task 4. 

As shown in the table above, out of the three configurations identified, the most used 
by the students was the ‘particular function’ (34.8%), in which a symbolic expression 
for the function is obtained from the graph of the function, and through algebraic 
procedures, it is possible to identify (or try to identify) which are the graphs of the 
elements of the family of antiderivatives. The second more frequently used type of 
configuration was the ‘tabular interpretation of the graph’ (30.4%), which refers to the 
answers in which a table of values that describe the function given originally is 
constructed from the graph of the function provided; from the table constructed (and 
the relations and properties that are established with it), it is possible to try to identify 
the elements that belong to the family of antiderivatives. The configuration that we 
have identified as ‘advanced’ was activated in answers which were characterized by the 
use of procedures and justifications centred on the properties/propositions of derivation, 
specifically the criterion for the analysis of the characteristics and construction of 
graphs of functions, in order to identify graphically the member that belongs to the 
family of antiderivatives of the function provided. 

 
Task 5: Difference between Integral and Antiderivative 

 
Task 5 aimed at exploring whether the students conceived the integral and the antide- 
rivative as different notions or not. Table 8 shows the results for level of accuracy. 

The correct answers were those in which the students pointed out and justified which 
were the differences between both notions. Partially correct answers were those in 
which the students mentioned that there were differences, but the differences were not 
pointed out, or no justification was given, or the justification was not valid (from the 
institutional point of view). Only 26.1% of the students pointed out that the antideriv- 
ative and the integral were the same notion and that the terms were synonyms (Borasi, 

 
 

 

Table 8 Frequencies and per- Level of accuracy Total frequency % 

centages for the level of accuracy    
for task 5 Correct 12 26.1 

Partially correct 22 47.8 
Incorrect 12 26.1 
Total 46 100 

 



 

 

 

 

 

Table 9  Frequencies and percentages for the type of configuration activated in the answers to task 5  

Types of configuration Frequency by group Total frequency % 

 
 
 
 
 
 
 

1992; Hall, 2010). Table 9 shows the justifications provided by the students regarding 
the difference between these two notions. 

As shown above, the most activated cognitive configuration in the answers was 
‘definitions for the notions’, used by 67.4% of the students. Such configuration was 
activated in answers in which there were arguments regarding the difference between 
the concepts of antiderivative and integral, providing definitions (personal or institu- 
tional) for both notions. For example, ‘…are different because the integral is a number, 
while the antiderivative is another function’. The configuration ‘examples of use’ was 
the second most activated configuration (two Colombian and six Mexican) and was 
activated in answers in which there were arguments regarding the difference between 
both notions by means of concrete examples (problems) of their use or application, for 
example, ‘the integral serves to calculate the area below the curve while the antideriv- 
ative serves to obtain a function’. It is important to point out that the examples of use 
that were provided in this second configuration made reference to the notions involved 
as process (or procedure) and not from a conceptual point of view. The third type of 
configuration activated was ‘particular-general’ (four Colombian and three Mexican), 
in answers in which the arguments were oriented towards the distinction of the 
antiderivative as a general case of the definite integral; in other words, the antiderivative 
was seen as indefinite integral, which is similar to what was found by Borasi (1992). 

 
Task 6: Elementary Functions 

 
Task 6 aimed at mobilizing the meaning of the antiderivative as elementary function. 
From this perspective, it is common to find in some books of calculus that a function 
that has antiderivative can be expressed as an elementary function; in other words, it 
can be expressed as an addition, a subtraction, a multiplication, a division or a 
composition of other functions using a finite number of algebraic operations. Obvious- 
ly, there are functions that cannot be expressed as elementary functions, for example, 
the function  f  x       ex2 ; therefore, with the expression ∫ex2dx, it is not possible to find 
the antiderivative, but it is possible to calculate the integral of the function with definite 
limits  (e.g.  ∫5ex2 dx,  can  be  calculated  by  numerical  integration).  In  this  context, 
Table 10 shows the results for the level of accuracy for task 6. The correct answers 
are those in which it was pointed out that it was possible to find a function in ℝ that can 
be integrated but does not have an antiderivative, and valid justifications for the 
solution were provided. Partially correct answers are those in which it was pointed out 
that it is possible to find a function with the characteristics mentioned before, but no 
arguments were provided or the arguments were not at all valid (from an institutional 

 1 2  

Particular-general 4 3 7 15.2 
Definitions for the notions 17 14 31 67.4 
Examples of use 2 6 8 17.4 
Total 23 23 46 100 

 



 

 

 

 
 

Table 10 Frequencies and per- Level of accuracy Total frequency % 

centages for the level of accuracy    
for task 6 

 
 
 
 
 
 

point of view). The answers, in which the student said it was not possible to find a 
function as such, were considered as incorrect. 

As shown above, a high percentage of students, 54.4% (No answer and Incorrect), 
had difficulties solving the task. Only 15.2% (7) were able to answer correctly, thus 
mobilizing the intended meaning of the antiderivative. Table 11 shows a summary of 
the types of cognitive configurations  activated  in  the answers of the students. 

Regarding correct answers (Table 10), we find the cognitive configuration ‘classic 
example’ that makes reference to the answers in which it was stated that it was possible 
to find a function with the characteristics required, and the arguments centred on 
explaining the ‘classic’ example (problem) that is frequently cited in textbooks, f  x       
ex2 . Only seven Colombian students mobilized this configuration. The config- uration 
‘Contradictory particular examples’ was activated in answers that mentioned that it was 
possible to find a function with the characteristics required, and there is an example of 
a concrete function that does not fulfil the characteristics; in other words, the examples 
provided are concrete functions that do have an antiderivative and can be integrated. 
The configuration ‘false conception of equality’ was mobilized by 19.6% of the students 
(four Colombian and five Mexican), and it was activated in answers in which the main 
argument was the proposition ‘it is not possible to find a function like that because the 
notions of antiderivative and integral are the same’. 

Almost half of the students, 47.8%, mobilized the configuration ‘invalid verbal 
descriptions’, which is connected to answers in which verbal arguments of a general 
nature are provided, and in which there is an attempt to articulate several mathematical 
concepts/definitions and properties/propositions such as continuity, derivability and 
complex functions. However, such articulation is either not sufficient to validly justify 
the solution to the task or is incongruent from a mathematical point of view. 

 
 
 

Table 11 Frequencies and percentages for the type of configuration activated in the answers to task 6 

Types of configuration Frequency by group Total frequency % 

Correct 7 15.2 
Partially Correct 14 30.4 
Incorrect 20 43.5 
No answer 5 10.9 
Total 46 100 

 

 1 2  

Classic example 7 0 7 15.2 
Contradictory particular examples 2 1 3 6.5 
False conception of equality 4 5 9 19.6 
Invalid verbal descriptions 9 13 22 47.8 
No solution provided 1 4 5 10.9 
Total 23 23 46 100 

 



No answer 
Total 

10 
46 

21.7 
100 

 

 

dx 

 

Task 7: Rules of the ‘Antiderivative’ 
 

In task 7, it was expected that the students, from the symbolic expression h(x)= 
f′(x)g(x)+ f(x)g′(x), were able to identify the proposition of derivation of the product, 
in other words, that h(x) is the derived function of a function p(x)= f(x)g(x), and 
therefore, determine that the antiderivative of h(x) is H(x)= f(x)g(x)+ C, with C 
belonging to the real numbers. Table 12 shows the results for the level of accuracy of 
the answers provided. 

Even though, the initial hypothesis of the researchers authors of this document was 
that the students would identify the property of derivation soon, this task ended up 
being very difficult for them, with 69.5% of students answering incorrectly (or not 
answering at all). Out of the rest of the students, 13 were able to identify the property of 
derivation of the product of functions, and only one was able to provide a correct 
answer to the task, by identifying that the antiderivative was H(x)= f(x)g(x)+ C. 
Regarding the cognitive configurations activated in their solutions, we could identify 
two types, as shown in Table 13. 

We can observe in the table above that 50% of the students used the configuration 
‘algebraic manipulation’, which consisted on the algebraic manipulation (procedure) of the 
symbolic linguistic element h(x), by applying the properties/proposition of integration and 
derivation, in order to determine the antiderivative of h(x). The second type of cognitive 
configuration activated was the ‘identification of the rule of derivation’, activated in 13 
answers (28.3%) and it consisted on, as indicated by its name, the identification of the 
property/proposition ‘if p(x)= f(x)g(x), then p′(x)= h(x)= f′(x)g(x)+ f(x)g′(x)’. 

However, out of the 13 students who activated this second type of configuration, 
only one answered that the antiderivative was H(x)= f(x)g(x)+ C, while the other 12 
students said that the antiderivative was H(x)= f(x)g(x), omitting the constant C. This 
shows that at least these 12 students do not think of the antiderivative from a conceptual 
point of view (Kiat, 2005), but on the contrary, they think of it as an inverse process of 
the integration and more concretely, as a procedure that allows them to obtain the ‘result 
of the inverse operation’ directly, just like in multiplying and dividing. 

 

Task 8: Notations of a Derivative Function 
 

Task 8 was intended to make students recognize the operators d 

 
 
and ∫	as inverse 

operators that refer to inverse processes. But, it was also intended to make student 
recognize that the antiderivative, as inverse process, should really be seen as a ‘not-so- 
direct inverse process’. Table 14 shows the results for the level of accuracy of the 
answers given this task. 

 
 
 

 

Table 12 Frequencies and per- Level of accuracy Total frequency % 

centages for the level of accuracy    
for task 7 Correct 1 2.2 

Partially correct 13 28.3 
Incorrect 22 47.8 
 



No answer 
Total 

10 
46 

21.7 
100 
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Table 13 Frequencies and percentages for the type of configuration activated in the answers to task 7 

Types of configuration Frequency by group Total frequency % 

 
 
 
 
 
 
 

As in the case of task 7, only two students mobilized the knowledge that we were 
expecting them to mobilize with this task, by correctly providing the antiderivative. A 
total of 45.7% of students omitted the constant C in their answers, pointing out that the 
antiderivative was  FðxÞ ¼ pffiffi1ffiffiffiffiffiffi. The other 50% of the students had some difficulties 
solving the task assigned. 

Regarding the type of cognitive configuration activated in their mathematical 
practices, we could identify two, which are shown in Table 15. The first type of 
configuration, ‘algebraic manipulation’, used by 41.3% of the students,  is connected  to 
answers in which f(x) was algebraically manipulated to obtain, by means of 
properties/propositions, a symbolic expression for f′(x), and then, ‘integrate’ f′(x). Only 
one out of the 19 students who mobilized this type of configuration in their 
answers could correctly find that the antiderivative of f(x) was  F  x         1 C. 

x2 þ1 
Furthermore, the configuration ‘identification of inverse operators’ was activated in 

answers in which the procedure of calculating the antiderivative of f(x) centred on the 
identification of d  and ∫	as inverse operators; in other words, the antiderivative as an 
inverse process of the derivative. However, only one of the 17 students that used this 
type of configuration came up with the correct answers. The other students gave 
partially correct answers in which they omitted the constant C, which makes us think 
once again that these 16 students conceive the antiderivative as a ‘direct inverse 
procedure’ which can be used to obtain the same function of origin of the provided 
derived function. 

 
Task 9: Application of the Antiderivative in Economics 

 
Task 9 was related to an application of the antiderivative in the context of Economics; 
in other words, given a certain marginal cost function, it was requested to find the total 
cost function. It is important to note that in such total cost function, the constant k 

 
 
 

 

Table 14 Frequencies and per- Level of accuracy Total frequency % 

centages for the level of accuracy    
for task 8 

 1 2  

Algebraic manipulation 14 9 23 50.0 
Identification of the rule of derivation 4 9 13 28.3 
No solution provided 5 5 10 21.7 
Total 23 23 46 100 

 

Correct 2 4.3 
Partially correct 21 45.7 
Incorrect 13 28.3 
 



Total 46 100 

 

 

  

  

 

Table 15 Frequencies and percentages for the type of configuration activated in the answers to task 8 

Types of configuration Frequency by group Total frequency % 

 
 
 
 
 
 
 

represents the fixed cost of production of a certain amount of a particular product. 
Table 16 shows the results for the variable level of accuracy. 

We must mention that the reason why we labelled some answers as partially correct 
(17) was that the constant k was omitted in the final answer. However, we did not have 
enough evidence to corroborate why such constant was omitted, so we considered at 
least the following two hypothesis: (1) The students calculated the antiderivative of the 
function provided because they identified that the questionnaire was about antideriva- 
tives, which, due to the results obtained in previous tasks about the conceptions that the 
students have of the antiderivative, would explain the omission; (2) the students did not 
give meaning to k in the economic context. We formulated this second hypothesis 
because 37% of the students (correct answers), apart from providing the antiderivative 
correctly, also described the meaning of k (fixed cost) and of other terms of the 
antiderivative (variable costs) correctly, in the context of economics. Table 17 shows the 
cognitive configurations activated. 

In the table above, we can observe three types of cognitive configurations that we 
could identify in the answers given by the students. These types correspond to the 
correct, partially correct and incorrect answers, respectively (Table 16). The first type, 
‘calculation of variable costs’, was activated in answers in which the procedure was 
based on the propositions of ‘integration’ to come up with an answer of the type ‘cðqÞ 
¼ 5q3  

−	5q3 
’.  However,  we  do  not  have  enough  information  that  can  help  us 

determine why the students omitted the constant k (that would represent fixed cost), so 
we only count on the hypothesis previously enounced, of what could have happened. On 
the other hand, the configuration ‘calculation of total cost’ is related to the correct 
answers in which the procedures were centred on the application of propositions of 
‘integration’, to conclude that the total cost function was defined as cðqÞ ¼ 5q3  

−	5q3  
þ 

k, and in the arguments, it was correctly identified that k represented 
fixed costs, while 5q3  

−	5q3   
represented variable costs. 

  

3 3 
 
 
 

 

Table 16 Frequencies and per- Level of accuracy Total frequency % 

centages for the level of accuracy    
for task 9 

 1 2  

Algebraic manipulation of f(x) 9 10 19 41.3 
Identification of inverse operators 6 11 17 37.0 
No solution provided 8 2 10 21.7 
Total 23 23 46 100 

 

Correct 17 37 
Partially correct 17 37 
Incorrect 8 17.3 
No answer 4 8.7 
 



No answer 
Total 

17 
46 

36.9 
100 

 

 

 

Table 17 Frequencies and percentages for the type of configuration activated in the answers to task 9 Types 

of configuration Frequency by group Total frequency % 

 
 
 
 
 
 
 
 

The third type of configuration, ‘other algebraic manipulations’, was activated in 
answers in which the students did not give any meaning to the derivative (i.e. marginal 
cost function), and, in general, for the objects involved in the task, in the economic 
context. Thus, for example, procedures centred on the calculation of the derivative of 
the marginal cost function were activated in the answers, by means of the application of 
the proposition of derivation. In this way, we can observe once again how 34 students 
(correct and partially correct answers) give the antiderivative the meaning of ‘inverse 
process of derivation’. 

 
Task 10: Solution of Ordinary Differential Equations 

 
The main objective of this task was to explore the process followed by the students in 
order to find the antiderivative, by means of a problem in which they needed to describe 
how they obtain the solution of a first-order differential equation. Additionally, by 
means of the descriptions of the students, it was also intended to explore the meaning 
that they give to the constant C, known as constant of integration, in order to see if they 
understand the ‘inverse process’ that finding an antiderivative implies. Table 18 shows 
the results for the level of accuracy of the answers provided for task 10. 

Needless to say, these students had serious difficulties solving the task presented. 
Only five of them were able to describe, from a correct mathematical point of view, the 
process that they followed in order to find the solution to the differential equation 
presented. Twelve of them (26.1%) omitted the constant of ‘integration’ in their 
solutions, so we labelled their answers as partially correct. Sixty-three percent of the 
students did not answer or answered something ‘incongruent’ (not valid or senseless 
from a mathematical point of view). The main cause mentioned by this 63% of the 
students, either orally at the moment that the questionnaire was administered or in 
writing, in the box intended for the answer to the task, was that they did not remember 
or did not know how to solve a differential equation. 

 
 

Table 18 Frequencies and per- 
 

Level of accuracy Total frequency % 

centages for the level of accuracy    
for task 10 

 1 2  

Calculation of variable costs 9 8 17 37 
Calculation of total cost 7 10 17 37 
Other algebraic manipulations 5 3 8 17.3 
No solution provided 2 2 4 8.7 
Total 23 23 46 100 

 

Correct 5 10.9 
Partially correct 12 26.1 
Incorrect 12 26.1 
 



Total 46 100 

 

 

 

Table 19 Frequencies and percentages for the type of configuration activated for task 10 
 

Types of configuration Frequency by group Total frequency % 

 1 2   

Verbal 3 8 11 23.9 
Symbolic 7 7 14 30.4 
Verbal-symbolic 2 2 4 8.7 
No solution provided 11 6 17 37.0 
Total 23 23 46 100 

 
 

Regarding the types of cognitive configuration activated in the answers, these were 
of three types (Table 19) and were classified according to the type of linguistic element 
used in their arguments. The first, ‘verbal’, is a configuration that was activated in 
answers in which the verbal-descriptive language to narrate the procedure that they had 
to follow in order to solve a differential equation, but without ‘developing’ such 
procedures symbolically; in other words, there is a description of what should be done, 
but it is not actually performed. Only one student who activated this type of configu- 
ration gave a correct answer. 

The second type of configuration, ‘symbolic’ was activated in answers that centred 
their arguments on the procedure itself of calculation of the solution; in other words, 
they solved the differential equation symbolically without describing with words the 
process they followed. The third configuration activated was a mixture of the two 
previous configurations. Four students (two Colombian and two Mexican) described 
the procedure and the properties/propositions used in the calculation of the solution, 
verbally. Three of the students, who mobilized the third configuration, ‘verbal-symbol- 
ic’, answered the task correctly. 

 
Task 11: Application of the Antiderivative in Physics 

 
The goal of task 11 was similar to task 10. The purpose was to explore the process 
followed by the students to find the function for the position of an object, given the 
function of velocity. In general, as shown in Table 20, the students did not have 
difficulties giving a correct answer of the type, ‘…if we have the function of position, 
we derive and then obtain the function of velocity, so if we calculate the antiderivative 
of the function of velocity, we will obtain the function of initial position’. This type of 
answers that we just exemplified, which centred on the verbal description of the 
procedures and properties/propositions, was connected to the configuration ‘verbal 
descriptions’ (Table 21). Once again, we observed how a high percentage of students 

 
 

 

Table 20 Frequencies and per- Level of accuracy Total frequency % 

centages for the level of accuracy    
for task 11 Correct 35 76.1 

Incorrect 5 10.9 
No answer 6 13 
 



 

 

t  

ds 

 

 

 

Table 21 Frequencies and percentages for the type of configuration activated in task 11 
 

Types of solutions Frequency by group Total frequency % 

 1 2   

Verbal descriptions 14 15 29 63 
Physics relations 4 7 11 24 
No solution provided 5 1 6 13 
Total 23 23 46 100 

 
conceived the idea antiderivative as a ‘direct inverse process’, which is justified with 
the proposition that many of them (29) explicitly stated ‘…we will obtain the function 
of initial position’, which indicates that they were not thinking of the family of 
functions that they would obtain by calculating the antiderivative (Kiat, 2005), but of 
the concrete element of such family from which the function of velocity was obtained. 

In other types of correct answers (6), the configuration of ‘relations of physics’ was 
activated, and the task was justified through propositions of the type ‘…velocity is a 

change in the position of an object with respect to time and it is defined by the equation 
dt ¼ vðtÞ, this means that the function of position is an antiderivative of the function of 
velocity’. Other answers that activated this second configuration and that were labelled 
as incorrect, focused on the development of procedures centred on the algebraic 
manipulation of the physical proposition/property ‘v d’, without considering the 
differences between the function v(t) provided in the problem formulation, and the 
magnitude v in the Physics formula. 

 
So, What Is the Meaning of the Antiderivative Mobilized by Civil Engineers? 

 
As verified with the analyses conducted for each of the tasks, although these were 
originally planned to activate a concrete partial meaning for the antiderivative (Fig. 1), 
the students who participated in this study (Mexican and Colombian) gave the antide- 
rivative the meaning of inverse process of derivation. However, as reflected in the 
results of the last five tasks of the questionnaire, the inverse process that the students 
confer to the antiderivative is from a more operational (procedure) point of view than a 
conceptual one, that is to say, the students perceive a direct inverse process in the same 
ways as multiplying and dividing, or adding and subtracting equal amounts. This is, 
when the students applied the ‘rules of integration’ to obtain the antiderivative of a 
function (derivative function), many of them were doing it thinking that they would 
obtain the concrete function (i.e. the particular element of the family of antiderivative 
functions) from which such derivative function came from, without understanding what 
really happens with the inverse process. 

For example, if we consider A, the set of elements of the family of functions F(x)= 
g(x)+ C, where C ∈	ℝ, and we take an element of that set, like F x g x −4, to go through 
the process of derivation, we obtain F′(x)= g′(x), which is the only element that 
make up set B (derivatives of the elements of set A). If, next, we take F′(x)= g′(x) 
through the process of antiderivative, we obtain set A as a result, and not the particular 
element F x g x −4. In other words, the antiderivative understood as the inverse process 
of the derivative should imply to think of it in a more conceptual rather than 



 

 

 

procedural way because it would be a non-direct inverse process. This had already been 
studied by Kiat (2005) who points out in his study that the students who omit the 
constant of the ‘antiderivative’ C are not aware that a constant must be written to specify 
the antiderivative function within a family of functions; in other words, the students are 
not aware that an integral is formed by a set of antiderivatives with C as a constant that 
varies. 

Now, the meaning that the students of our study give to the antiderivative, inverse 
process of derivation, is related to two types of partial meanings of the antiderivative 
(Gordillo & Pino-Fan, 2016): sums – differences, and fluents – fluxions. From a current 
point of view, the first partial meaning, ‘sums – differences’, is activated in the 
mathematical practices in which an intra-mathematical language (characteristic of 
Mathematics) and definitions that refer to the use of a rule of integration or method  of 
integration are used to solve mathematical situations through algebraic procedures. The 
second partial meaning, ‘fluents – fluxions’, is activated in mathematical practices in 
which language and definitions that are characteristic of Physics are used to provide 
arguments for the changes between magnitudes (acceleration, velocity, position…) and 
solve situations that imply physical phenomena of variation or speed. 

Thus, according to the primary mathematical objects (linguistic elements definitions, 
propositions, procedures and arguments) mobilized by the students in their practices 
developed in connection to each of the tasks of the questionnaire, and according to the 
description above of the two partial meanings of the antiderivative, there is evidence 
that the meaning that future engineers conferred to the antiderivative was the inverse 
process of derivation, in the sense of sums-differences. 

 
 

Final Reflections 
 

The results obtained through the questionnaire administered show evidence that the 
students were more successful in solving tasks that required the activation of the 
antiderivative in its definition of inverse process of derivation in the sense of the partial 
meaning sums-differences. To a lesser extent, the inverse process was activated in the 
sense of the partial meaning of fluents-fluxions. Other partial meanings of the antide- 
rivative such as tangents-squarings and elementary functions (Gordillo & Pino-Fan, 
2016) were not activated in the answers of the students. 

Now the questions would be why did the engineering students of our study activate, 
with difficulties, one of the four partial meanings of the antiderivative?   The answer 
to this question leads us, on the one hand, to face one  of  the  limitations of our study: 
The type of problems suggested, were they appropriate   for engineers, their practices 
and interests? Although the questionnaire that we administered was not adapted to the 
context and interests of engineers, the tasks were designed to activate the  different  
partial  meanings  of  the  antiderivative,  and it aimed at exploring the understanding 
that  students  who  were  studying  their first university courses (or at the beginning 
of any program related to mathematics) had of such notion (Gordillo et al.,  2015).  
However,  for  the purpose of this research, the questionnaire is powerful, since as 
previously discussed, mathematics in engineering courses  is  studied  at  the  
beginning  of the program and then, it is expected that students apply such 
mathematics to 



 

 

 

different contexts (i.e. real life situations of engineering)  in  upcoming  courses. That 
is why our  research is  relevant,  after finishing their  first  calculus courses,  do 
students understand what is the object antiderivative? 

On the other hand, the question brings to our mind the role of the educator of 
engineers. The educator of future engineers should be aware, first of all, of the diversity 
of partial meanings of the mathematical object under study, in our case, the antideriv- 
ative (Gordillo & Pino-Fan, 2016). By understanding the use of such partial meanings 
in the context in which he works, the educator would have opportunities to pose 
problems that mobilize such meanings and, at the same time, adjust to the real needs 
of the engineers in training. Thus, taking into account the complexity of mathematical 
objects (the antiderivative in our case) and presenting to the students a representative 
sample of the partial meanings in which this complexity is concretized can represent an 
improvement in the teaching and learning of such mathematical object. 

Finally, this study showed how the cognitive configurations activated by the Mex- 
ican students were the same, and with similar frequencies of use, as the Colombian’s, 
thus activating the same meaning of the antiderivative, already discussed above. 
Furthermore, if we add that the questionnaire had been administered to samples of 
university students, mathematicians and future teachers (Gordillo, 2015), and that the 
meaning mobilized by mathematicians as well as future teachers was mainly Elemen- 
tary functions, then it seems that the meanings mobilized by our sample of engineers 
are not located in the context of a classroom, university or country, but it is a meaning 
that is shared by a community—as found by Bingolbali et al. (2007) in the case of the 
derivative—in this case the community of civil engineering students. 
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