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Linking inquiry and transmission in teaching 
and learning mathematics and experimental 

sciences1

Juan D. Godino
Carmen Batanero

Gustavo R. Cañadas
José M. Contreras

ABSTRACT
Different theories assume that the learning of mathematics and sciences should be based 

on constructivist methods, where the students inquire about problem – situations and assign a 
facilitator role to the teacher. From a contrasting view, other theories advocate for giving a more 
central role to the teacher, which involves the explicit transmission of knowledge and the students’ 
active reception. In this paper, we reason that the optimization of learning requires adopting an 
intermediate position between these two extreme models, because of the complex dialectic between 
the students’ inquiry and the teacher’s transmission of knowledge. We base our position on a model 
with anthropological and semiotic assumptions about the nature of mathematical and scientifi c 
objects, as well as on the structure of human cognition.

Keywords: Theories of instruction. Inquiry learning. Knowledge transmission. Onto-semiotic 
approach. Scientifi c and mathematical knowledge.

Articulação entre a exploração e a transmissão de conhecimentos no 
ensino e aprendizagem da matemática e das ciências experimentais

RESUMO
Diversas teorias postulam que a aprendizagem de matemática e das ciências experimentais 

deve estar baseada numa pedagogia construtivista, orientada pela exploração de situações problema 
por parte dos estudantes, atribuindo ao professor um papel de facilitador. No extremo oposto 

1 Reviewed and extended version of the paper presented at theNinth Conference of the European Society for 
Research in Mathematics Education (CEME9, 4-8 February 2015), Prague, Czech Republic.
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situam-se outras teorias que defendem um papel de maior protagonismo da parte do professor, o 
que implicaria a transmissão explícita de conhecimentos e a recepção ativa por parte dos estudantes. 
Neste trabalho, baseando-nos numa síntese destas posições de ensino, induzimos que a otimização 
da aprendizagem requer a adoção de uma posição intermédia entre estas duas posições extremas, 
reconhecendo a dialética complexa entre a exploração por parte do estudante e a transmissão 
de conhecimentos por parte do professor. Fundamentamo-nos na asserção de pressupostos 
antropológicos e semióticos sobre a natureza dos objetos matemáticos e científi cos, assim como 
em suposições relativas à estrutura da cognição humana.

Palavras-chave: Teorias de ensino. Aprendizagem construtivista. Transmissão de 
conhecimentos. Enfoque ontossemiótico. Conhecimento matemático e científi co.

INTRODUCTION
The debate between the models of a school that “conveys knowledge” and others 

in which “knowledge is constructed” currently seems to tend towards the latter. This 
preference can be seen in the curricular guidelines from different countries, which are 
based on constructivist and socio-constructive theoretical frameworks:

Students learn more and learn better when they can take control of their learning by 
defi ning their goals and monitoring their progress. When challenged with appropriately 
chosen tasks, students become confi dent in their ability to tackle diffi cult problems, eager 
to fi gure things out on their own, fl exible in exploring mathematical ideas and trying 
alternative solution paths, and willing to persevere (NCTM, 2000, p.20).

In the case of mathematics education and experimental sciences, problem-
solving and “mathematical investigations” are considered essential for both students’ 
mathematical learning and teachers’ professional development. Constructivist viewpoints 
of learning shifts the focus towards the processes of the discipline, practical work, project 
implementation and problem solving, rather than prioritizing the study of facts, laws, 
principles and theories that constitute the body of disciplinary knowledge.

Nevertheless, this debate is hiding the fact that students differ in skills and 
knowledge, and most of them need a strong guidance to learn; even when some students 
with high skills and knowledge can learn advanced ideas with little or no help. The issue 
of the type of aid needed, depending on the nature of what is to be built or transmitted is 
also missed in this debate. As a result of this situation, the question of the kind of help 
that a teacher should give to a usually heterogeneous class, when we want students to 
acquire mathematical knowledge, understandings, and skills, also arises.

The family of “Inquiry-Based Education” (IBE), “Inquiry-Based Learning” (IBL), 
and “Problem-Based Learning” (PBL) instructional theories, which postulate the inquiry-
based learning with little guidance by the teacher, do not seem to take into account the 
described reality, namely the students’ heterogeneity and the variety of knowledge to be 
studied. These models may be suitable for gifted students, but possibly not for the majority, 
because the type of help that the teacher can provide could signifi cantly infl uence the 
learning, even in talented students.
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In this paper, we analyse the need to implement instructional models that articulate a 
mixture of construction/inquiry and transmission of knowledge to achieve a mathematical 
instruction that locally optimizes learning. The basic assumption is that the moments 
in which transmission and construction of knowledge can take place are everywhere 
dense in the instructional process. Optimization of learning involves a complex dialectic 
between the roles of the teacher as an instructor (transmitter) and facilitator (manager), 
and student’s roles as an active constructor of knowledge and receivers of meaningful 
information. Hiebert and Grouws (2007) state that “because a range of goals might be 
included in a single lesson, and almost certainly in a multi-lesson unit, the best or most 
effective teaching method might be a mix of methods, with timely and nimble shifting 
among them” (p.374).

The discussion raised on the inquiry and transmission instructional models can 
be related to the ongoing debate between constructivism and objectivism (JONASSEN, 
1991), as well as to the distinction between teaching models that are focused on the learner 
or the teacher, respectively (STEPHAN, 2014). The different varieties of constructivism 
share, among others, the assumptions that learning is an active process, that knowledge 
is constructed rather than innate or passively absorbed and that it is necessary to pose 
signifi cant open and challenging problems to the students to achieve effective learning 
(FOX, 2001). Within Objectivism, particularly in its behaviorist version, knowledge is 
publicly observable, and learning is the acquisition of that knowledge through interaction 
between stimuli and responses. Often direct instruction or lecture – based teaching is the 
type of conditioning used to achieve the desirable learning behavior (BOGHOSSIAN, 
2006). 

Below we fi rst summarize the main features of instructional models based on inquiry 
and problem solving and secondly of models that attribute a key role to transmission 
of knowledge. We then present the case for a mixed model that combines dialectically 
inquiry and transmission, basing on the epistemological and didactical assumptions of 
the onto-semiotic approach to mathematical knowledge and instruction (GODINO; 
BATANERO; FONT, 2007). This mixed model is exemplifi ed with research related to 
a process of training future teachers in statistics. Finally, we include some additional 
refl ections and implications.

INQUIRY AND PROBLEM-BASED LEARNING
As indicated above, the acronyms IBE, IBL, PBL designate instructional theoretical 

models developed from several disciplines, which have parallel versions for the teaching 
of experimental sciences (IBSE) and mathematics (IBME). They attributed a key role 
to solve “real” problems, under a constructivist approach. In some applications in 
mathematics education, it is proposed that students construct knowledge following the 
lines of work of professional mathematicians themselves. The mathematician faces 
non-routine problems, explores, searches for information, makes conjectures, justifi es 
and communicates the results to the scientifi c community; mathematics learning should 
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follow a similar pattern. “Learning science and technology is to learn to participate in 
the communities of practices of scientist and technologist respectively” (MURPHY; 
MCCORMICK, 1997, p.462).

Using problem-situations (mathematics applications to everyday life or other 
fi elds of knowledge, or problems within the discipline itself) to enable students to make 
sense of the mathematical conceptual structures is considered essential. These problems 
are the starting point of mathematical and scientifi c practice, so that problem-solving 
activities, including formulation, communication, and justifi cation of solutions are keys 
to developing the ability to cope with non-routine problems. This is the main objective 
of the “problem solving” research tradition (SCHOENFELD, 1992), whose focus is on 
the identifi cation of heuristics and metacognitive strategies. It is also essential for other 
theoretical models such as the Theory of Didactical Situations (TDS) (BROUSSEAU, 
1997), and Realistic Mathematics Education (RME) (FREUDENTHAL, 1973; 1991), 
whose main features are described below.

Problem solving
The importance given to problem-solving in the curricula and educational research 

is the result of a view that considers this activity as the essence of mathematics and 
experimental science. Polya’s seminal work on how to solve problems provided the initial 
impetus for a wide research program that took place in the following decades, and which 
analyzed issues such as solving simulated problems with the aid of computers, expert 
problem solving, problem-solving strategies and heuristics, metacognitive processes and 
posing problems. Artigue and Blomhoj (2013) relate the tradition of “problem-solving” 
with IBL:

Students facing non-routine problems have to develop their own strategies and 
techniques; they have to explore, conjecture, experiment and evaluate; they are given 
substantial mathematical responsibilities and generally encouraged to generate questions 
themselves and to envisage possible generalizations of the results they obtain. (p.802). 

English and Sriraman (2010) analyse several refl ections and evaluations of the 
effectiveness of problem-solving research and conclude on their little relevance for school 
practice. These authors believe that “Unfortunately, there is a lack of studies that address 
the conceptual development based on problem-solving in interaction with the development 
of problem-solving skills” (ENGLISH; SRIRAMAN, 2010, p.267).

Theory of Didactical Situation (TDS)
In TDS (BROUSSEAU, 2002), problem – situations should be selected in order 

to optimize the adaptive dimension of learning and students’ autonomy. The intended 
mathematical knowledge should appear as the optimal solution to the problems; it is 
expected that, by interacting with an appropriate milieu, students progressively and 
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collectively build knowledge rejecting or adapting their initial strategies if necessary. 
According to Brousseau (2002),

The intellectual work of the student must at times be similar to this scientifi c activity. 
Knowing mathematics is not simply learning defi nitions and theorems in order to recognize 
when to use and apply them. We know very well that doing mathematics properly implies 
that one is dealing with problems. We do mathematics only when we are dealing with 
problems—but we forget at times that solving a problem is only a part of the work; fi nding 
good questions is just as important as fi nding their solutions. A faithful reproduction of 
a scientifi c activity by the student would require that she produce, formulate, prove, and 
construct models, languages, concepts, and theories; that she exchange them with other 
people; that she recognize those which conform to the culture; that she borrow those 
which are useful to her; and so on. (p.22).

To allow such activity, the teacher should conceive problem – situations in which 
they might be interested and ask the students to solve them. The notion of devolution 
is also related to the need for students to consider the problems as if they were their 
own and be responsible for solving them. The TDS assumes a strong commitment with 
mathematical epistemology, as refl ected in the meaning attributed to the notion of the 
fundamental situation, which Artigue & Blomhøj (2013, p.803) describe as “a situation 
which makes clear the raison d’être of the mathematical knowledge aimed at”.

Another important feature of the TDS is the distinction made between different 
dialectics: action, formulation, and validation, which refl ect important specifi cities of 
mathematical knowledge. 

Realistic Mathematics Education (RME)
In RME, principles that clearly correspond to IBME assumptions are assumed. 

Thus, according to the “activity principle,” instead of being receivers of ready-made 
mathematics, the students, are treated as active participants in the educational process, in 
which they develop all kinds of mathematical tools and insights, themselves. According 
to Freudenthal (1973), using scientifi cally structured curricula, in which students are 
confronted with ready-made mathematics, is an ‘anti-didactic inversion.’ It is based 
on the false assumption that the results of mathematical thinking, placed on a subject-
matter framework, can be transferred directly to the students. (VAN DEN HEUVEL-
PANHUIZEN, 2000).

The principle of reality is oriented in the same direction. As in most approaches 
to mathematics education, RME aims at enabling students to apply mathematics. The 
overall goal of mathematics education is making students able to use their mathematical 
understanding and tools to solve problems. Rather than beginning with specific 
abstractions or defi nitions to be applied later, one must start with rich contexts demanding 
mathematical organization or, in other words, contexts that can be mathematized. Thus, 
while working on context problems, the students can develop mathematical tools and 
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understanding. The guidance principle also stresses the same ideas. One of Freudenthal’s 
(1991) key principles for mathematics education is that it should give students a “guided” 
opportunity to “re-invent” mathematics. This implies that, in RME, both the teachers 
and the educational programs have a crucial role in how students acquire knowledge. 
According to Artigue and Blomhøj (2013, p.804), “RME is thus a problem-solving 
approach to teaching and learning which offers important constructs and experience for 
conceptualizing IBME”.

TRANSMISSION BASED LEARNING IN EDUCATION
We consider as models based on knowledge transmission, various forms of 

educational intervention in which the direct and explicit instruction is highlighted. A 
characteristic feature of strongly guided instruction is the use of worked examples, while 
the discovery of the solution to a problem in an information-rich environment is similarly 
a compendium of discovery learning minimally guided.

For several decades these models were considered as inferior and undesirable 
regarding different combinations of constructivist learning (learning with varying 
degrees of guidance, support or scaffolding), as shown in the initiatives taken in different 
international projects to promote the various IBSE and IBME modalities (DORIER; 
GARCIA, 2013). Transmission of knowledge by presenting examples of solved problems 
and the conceptual structures of the discipline is ruled by didactical theories in mathematics 
education with the strong predicament, as mentioned in the previous section. 

The uncritical adoption of constructivist pedagogical models can be motivated 
by the observation of the large amount of knowledge and skills, in particular, everyday 
life concepts, that individuals learn by discovery or immersion in a context. However, 
Sweller, Kirschner and Clark (2007) state that:

There is no theoretical reason to suppose or empirical evidence to support the 
notion that constructivist teaching procedures based on the manner in which humans 
acquire biologically primary information will be effective in acquiring the biologically 
secondary information required by the citizens of an intellectually advanced society. That 
information requires direct, explicit instruction. (p.121)

This position is consistent with the argument put forward by Vygotsky; scientifi c 
concepts do not develop in the same way as everyday concepts (VYGOTSKY, 1934). 
These authors believe that the design of appropriate learning tasks should include 
providing students an example of a completely solved problem or task, and information 
on the process used to reach the solution. As Sweller, Kirschner, and Clark (2007) 
observe, “we must learn domain-specifi c solutions to specifi c problems and the best way 
to acquire domain-specifi c problem-solving strategies is to be given the problem with its 
solution, leaving no role for IL [inquiry learning]” (p.118). According to Sweller et al., 
empirical research of the last half-century on this issue provides clear and overwhelming 
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evidence that minimal guidance during instruction is signifi cantly less effective and 
effi cient than a guide specifi cally designed to support the cognitive process necessary 
for learning.Similar results are refl ected in the meta-analysis by Alfi eri, Brooks, Aldrich 
&Tenenbaun (2011).

According to Kirschner, Sweller, & Clark (2006), we are skillful in an area because 
our long-term memory contains huge amounts of information concerning the area. That 
information permits us to quickly recognize the characteristics of a situation and indicates 
to us, often unconsciously, what to do and when to do it. (p.76).

In Table 1 we present the main features of the objectivist and constructivist 
perspectives considered in this paper as extreme ideal alternatives when applied in 
instructional design. They are grouped into three dimensions: epistemic (knowledge which 
is the object of instruction), cognitive (learning of knowledge, skills, and dispositions), 
and instructional (means and modes of interaction). These features have been summarized 
from the works of various authors (JONASSEN, 1991; ERNEST, 1994; MURPHY; 
MCCORMICK, 1997; BOGHOSSIAN, 2006; ANDREW, 2007).

TABLE 1 – Characteristics of objectivism and constructivism as the basis of instruction.

Dimensions Objectivism Constructivism

Epistemic

(Nature of 
knowledge 
object of 
instruction)

- Knowledge has an existence external to 
the subject.

- Knowledge structure is determined by 
concepts, properties, and relationships.

- Meaning corresponds to world entities 
and categories, independent of the 
understanding of any subject

- Symbols represent reality. 

- Knowledge depends on the subject’s 
mental activity.

- The structure of knowledge depends on 
experience and personal interpretations.

- Meaning is not based on a correspondence 
with the world; it depends on personal 
understanding.

- Symbols are tools to construct reality. 

Cognitive

(Learning of 
knowledge, 
skills, and 
dispositions)

- The mind is a symbol processor and 
refl ects reality.

- Thinking is based on the structured, 
recognizable and transmissible 
accumulation of factual knowledge.

- Prior students’ knowledge and the 
answers they provide during the learning 
process are accepted if they agree with 
the objective knowledge.

- Student’s refl ection is irrelevant and 
unnecessary. 

- The mind is a builder of symbols and a 
conceptual system that builds a reality.

- Thinking is based on the perception and 
grows from physics, physical and social 
experience.

- Prior students’ knowledge and the 
answers they provide condition instruction, 
which must be adapted to the students’ 
conceptual frameworks.

- Students’ refl ection and exploration are the 
engines of problem solving and inquiry into 
the situations posed.
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Dimensions Objectivism Constructivism

Instructional

(Means and 
interaction 
pattern)

- The teacher is the source of the 
knowledge that is the object of teaching.

- Student exploration is unnecessary and, 
therefore, is not stimulated.

- Interactions between students are 
unnecessary because learning is an 
individual act.

- Reproduction of objective knowledge 
culturally accepted is emphasized. 

- Errors are used as an opportunity to 
reinforce the right behavior. 

- The teacher acts as a coach, leading 
the emerging knowledge in cooperative 
contexts.

- Student exploration is essential and, 
therefore, is stimulated.

- Interactions between students inside 
and outside the classroom are promoted 
because learning is a social act.

- The construction of knowledge is 
emphasized by solving tasks in 
contextualized environments.

- Students take responsibility for their own 
learning. 

Source: The authors.

A DIDACTICAL MODEL BASED ON INQUIRY AND 
TRANSMISSION
In the two previous sections, we described some basic features of two extreme 

models for organizing mathematics instruction: discovery learning versus learning based 
on the reception of knowledge (usually regarded as traditional whole-class expository 
instruction). In this section, we describe the characteristics of an instructional model in 
which these two models are combined: the students’ investigation of the problem situations 
with the explicit transmission of knowledge by the “teacher system”2 at critical moments 
in the mathematical instruction process. We consider that it is necessary to recognize and 
address the complex dialectic between inquiry and knowledge transmission in learning 
mathematics. In this dialectic, dialogue and cooperation between the teacher and the 
students (and among the students themselves), regarding the situation – problem to solve 
and the mathematical content involved, can play a key role. In these phases of dialogue 
and cooperation, moments of transmitting knowledge necessarily happen. 

Onto-semiotic complexity of knowledge
Godino and Batanero (1994) started to lay the foundation for an ontological, 

epistemological and cognitive model of mathematical knowledge, based on anthropological 
and semiotic assumptions, which has been expanded and systematized in later works 
(GODINO; BATANERO; FONT, 2007; FONT; GODINO; GALLARDO, 2013), resulting 
in the Onto-semiotic Approach to mathematical knowledge and instruction (OSA).

2 This system can be an individual teacher, a virtual expert system, or the intervention of a “leader” student in a 
team working on a collaborative learning format.
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In Figure 1, we present the key elements of the epistemological and cognitive 
modeling of mathematical knowledge: the notions of practice, object, process (sequence of 
practices from which the object emerges) and semiotic function (where the various entities 
and operations are related). Operative, discursive and regulatory practices are conducted 
in solving certain problems, which may have a mathematical or extra-mathematical 
character; and therefore the onto-semiotic modeling of knowledge can be applied not 
only to mathematics but also to other disciplines.

FIGURE 1 – Primary entities of the OSA ontology and epistemology.

Source: The authors.

Within the OSA it is postulated that the systems of practices and emerging objects 
are relative to the contexts of use, the institutions in which the practices take place and 
the subjects involved in these practices (language games and forms of life, according 
to Wittgenstein 1953). In this way, in this framework, assumptions from the objectivist 
(practices, objects, and institutional meanings) and constructivist approaches to knowledge 
(systems of practices, objects, and personal meanings) are combined.

The OSA provides the basis for an instructional model that recognizes a key 
role in both the inquiry and the transmission of knowledge in teaching and learning 
mathematics and experimental sciences. Moreover, the nature of mathematical and 
scientifi c objects involved in practices whose competent performance by students is 
intended, is considered. 

The way a person learns something depends on what has to be learned. According to 
the OSA, students should appropriate (learn) the onto-semiotic institutional confi gurations 
involved in solving the proposed problem – situations. The paradigm of “questioning the 
world” proposed by the Anthropological Theory of Didactics (TAD) (CHEVALLARD, 
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2013), and, in general, by IBE models is assumed, so that the starting point should be the 
selection and inquiry of “good problem – situation”.

The key notion of the OSA for modelling knowledge is the onto-semiotic 
confi guration (of mathematical practices, objects, and processes) in its double version, 
institutional (epistemic) and (cognitive). In a training process, the student’s performance 
of mathematical practices related to solving certain problems brings into play a 
conglomerate of objects and processes whose nature, from the institutional point of 
view is essentially normative (regulative)3 (FONT; GODINO; GALLARDO, 2013). 
When the student carries out no relevant practices, the teacher should guide him/her to 
those expected from the institutional point of view. Thus each object type (concepts, 
languages, propositions, procedures, argumentations) or process (defi nition, expression, 
generalization) requires a focus, a moment, in the study process. In particular, regulative 
moments (institutionalization) are everywhere dense in the mathematical activity and 
the process of study, as well as in the moments of formulation / communication and 
justifi cation.

Performing mathematical practices involves the intervention of previously known 
objects to understand the demands of the problem – situation and implementing an initial 
strategy. Such objects, their rules and conditions of application, must be available in the 
subject’s working memory. Although it is possible that the student him/herself could fi nd 
such knowledge in the “workspace,” there is not always enough time or the student may 
not succeed; so the teacher and peers can provide invaluable support to avoid frustration 
and abandonment. These are the moments of remembering and activation of prior 
knowledge, which are generally required throughout the study process. Remembering 
moments can be needed not only in the exploratory / investigative phase, but also in the 
formulation, communication, processing or calculation, and justifi cation of results phases. 
These moments correspond to acts of knowledge transmission and may be crucial for 
optimizing learning.

Results of mathematical practices are new emerging objects whose defi nitions 
or statements have to be shared and approved by the community at the relevant time 
of institutionalization carried out by the teacher, which are also acts of knowledge 
transmission.

Types of didactical trajectories
Under the OSA framework, other theoretical tools to describe and understand the 

dynamics of mathematics instruction processes have been developed. In particular, the 

3 This view of mathematical knowledge is consistent with that taken by Radford�s objectification theory. Radford 
(2013) writes: “Knowledge, I just argued, is crystallized labor – culturally codified forms of doing, thinking and 
reflecting. Knowing is, I would like to suggest, the instantiation or actualization of knowledge” (p.16). He adds: 
“Objectification is the process of recognition of that which objects us – systems of ideas, the cultural meanings, 
forms of thinking, etc.” (p.23). In our case, such crystallized forms of work are conceived as cultural “rules” fixing 
ways of doing, thinking and saying faced to problem – situations that demand an adaptive response.
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notions of didactical confi guration and didactical suitability (GODINO; CONTRERAS; 
FONT, 2006; GODINO, 2013). A didactical confi guration is any segment of didactical 
activity (teaching and learning) between the beginning and the end of solving a task or 
problem – situation. Figure 1 summarizes the components and the internal dynamics 
of a didactical confi guration, including the students’ and the teacher’s actions, and the 
resources to face the joint study of the task.

A priori, neither the transmission nor the inquiring interaction format is only 
proposed for managing the didactic trajectory; instead, the notion of didactical suitability 
(GODINO, 2013) serves as a guiding criterion to optimize this management. Achieving 
a high didactical suitability requires a good balance among the epistemic, ecological, 
cognitive, affective, interactional, and mediational facets. Depending on the content, 
the students, the available resources and other factors that infl uence the instructional 
processes, a high didactical suitability may involve the implementation of a mixed 
instructional model, where inquiring, transmission, and dialogic / cooperative moments 
are articulated. Cooperative moments involve the application of inquiry and refl ective 
actions by the students and knowledge transmission actions by the teacher, and have 
therefore a mixed character.

It is interesting to distinguish four basic types of problem situations depending on 
the different role they play in the instructional process, and the main pattern of interaction 
required in each case to optimize learning:

– Introductory situations, through which students “meet the content for the fi rst 
time” To get students involved in the study, the teacher should remember or 
communicate the basic information they need to understand the context and 
the task; in these situations, therefore, the transmissive and dialogic formats 
predominate.

– Drill and practice situations, focused on the mastering of procedural skills and 
on the retention of concepts, properties and justifi cations involved in solving 
the introductory situations. The personal interaction format is prevalent with 
possible reinforcements on the part of the teacher.

– Application situations, through which students more autonomously apply the 
knowledge learned and explore possible extensions. Inquiry and cooperative 
formats are common, where the problem is addressed by teamwork, without 
ruling out the participation of the teacher to guide and provide the necessary 
information. 

– Assessment situations, through which systematic information on the student’s 
degree of learning is obtained. The pattern of interaction is essentially individual; 
the student personally responds to a representative sample of tasks.

These types of situations give rise to the corresponding types of didactical 
confi guration, which are sequenced along the didactical trajectory. As was previously 
indicated, in some confi gurations dialogue and knowledge transfer predominate, and 



Acta Scientiae, v.18, n.4, Edição Especial, 201640

in others inquiry. The change from one format to another is not a priori regulated, 
but instructional circumstances (basically the previous students’ knowledge, their 
capabilities, temporary and material resources available) can determine the change, 
the optimization of the didactic suitability of the process being the basic criterion. 

Dynamics of didactical confi gurations
Under the OSA framework, other theoretical tools to describe and understand the 

dynamics of mathematics instruction processes have been developed. In particular, the 
notions of didactical confi guration and didactical suitability (GODINO; CONTRERAS; 
FONT, 2006; GODINO, 2013). A didactical confi guration is any segment of didactical 
activity (teaching and learning) between the beginning and the end of solving a task or 
problem – situation. Figure 1 summarizes the components and the internal dynamics 
of a didactical confi guration, including the students’ and the teacher’s actions, and the 
resources to face the joint study of the task.

The problem – situation that delimits a didactical confi guration can be made of 
various subtasks, each of which can be considered as a sub-confi guration. In every 
didactical confi guration there is an epistemic confi guration (system of institutional 
mathematical practices, objects, and processes), an instructional confi guration (system 
of teacher and learner roles and instructional media), and a cognitive confi guration 
(system of personal mathematical practices, objects, and processes) which describe 
learning. Figure 1 shows the relationships between teaching and learning, as well 
as with the key processes linked to the onto-semiotic modelling of mathematical 
knowledge (FONT; GODINO; GALLARDO, 2013; GODINO; FONT; WILHELMI; 
LURDUY, 2011). Such modelling, together with the teachers and learners roles, and 
their interaction with technological tools, suggest the complexity of the relationships 
established within any didactical confi guration, which cannot not be reduced to merely 
inquiry and transmission moments.

The bottom arrow in Figure 1, directed from learning to teaching, points out that 
these relationships are not linear, but cyclical. At the time of inquiry, for example, the 
student interacts with the epistemic confi guration without intervention (or with little 
infl uence) from the teacher. This interaction determines the teacher’s interventions that, 
therefore, should be provided in instructional confi gurations. Cognitive trajectories 
produce examples, meanings, arguments, etc., that infl uence the study process and, 
consequently, the epistemic and instructional confi guration, enabling or modifying–and 
then conditioning – the educational project planned.
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FIGURE 2 – Components and internal dynamics of a didactical confi guration.

Source: Godino et al. (2015, p.2646).

From our point of view, the “theory of didactical moments” proposed in the 
Anthropological Theory of Didactic (ATD) (CHEVALLARD, 1999) help to describe part 
of this internal dynamics of didactic confi gurations, which is described in this theory as 
didactical praxeologies. The onto-semiotic view of mathematical knowledge provides 
additional criteria to complement Chevallard’s theory. Each type of mathematical object / 
process plays a role in the mathematical work and therefore requires a focus and time in the 
study processes. Such moments can be seen as states of the stochastic processes trajectories 
that we have used to model the mathematics teaching and learning in previous works 
(GODINO; CONTRERAS; FONT, 2006). There will be states (or moments) devoted 
to conceptual defi nitions, propositional statements, procedural routines, justifi cation 
arguments, representation building and translation (DUVAL, 1995), generalization, 
and establishment of relationships and connections between different objects. There are 
also meta-mathematical moments (D’AMORE; FONT; GODINO, 2007) of planning, 
management, and evaluation, both for the students (who should manage their work to 
solve each problem or task) as well as for the teacher (who have to plan what and how 
to teach) (Figure 1).

The problem is not whether or not to guide the instruction, since nobody argues 
that some degree of guidance is necessary; the central question is when and how to guide, 
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what aspects of the construction of knowledge can be left to the students’ responsibility 
and for which direct instruction is preferable. No doubt, these are decisions that the 
teacher should take, depending on the cognitive – affective states of their students along 
the corresponding didactical trajectory. Hence, general recommendations on inquiry or 
transmissive models are simplifi cations of an extraordinarily complex reality.

Optimization of learning, that is, achieving high didactical suitability instructional 
processes in the various facets, especially regarding interactional – mediational and 
cognitive – affective suitability has a strong local character (GODINO, 2013). “Controlled 
experiments almost uniformly indicate that learners should be explicitly shown what to 
do and how to do it when dealing with new information” (KIRSCHNER; SWELLER; 
CLARK, 2006, p.79). The optimization of the didactic suitability of a mathematical study 
process requires a mixed instructional model in which both the student and the teacher 
play leading roles. “For the general to appear in the singular both the student and the 
teacher have to work together. The teacher and the student have to engage in the process 
of objectifi cation” (RADFORD, 2013, p.35).

Case analysis: An instructional design in statistics with future 
teachers
Godino, Rivas, Arteaga, Lasa and Wilhelmi (2014) apply the OSA framework in 

the different phases of a training experience in statistics and elementary probability with 
future primary school teachers. The design of the formative experience is based on the 
resolution of three projects, two of them on elementary descriptive statistics and the third 
on elementary probability. The study was conducted over three weeks with 4.5 hours 
per week. In the fi rst week (one 2-hour session in a large group, with 60 students) the 
fi rst project (fi nding out the statistical characteristics of a “typical student”) is presented 
and developed in the classroom. The teacher presents this project as a fully developed 
example but with mixed dynamics in trying to engage students in remembering and 
applying the statistical concepts and techniques they studied in high school. The analysis 
of the session observation shows that the moments of students’ inquiry –where they 
work alone or in groups to respond to the issues raised- are interleaved by teacher’s 
clearly transmissive moment; which can be directed to the whole class, a student group 
or individual students.

In the project above, the students, organized in pairs, are asked to respond to the 
questions using a data set provided by the teacher:

– What are the characteristics of a typical student, which is representative of the 
group?

– How representative is the typical student regarding the group?

Initially, and for about 15 minutes, the students work in trying to answer the 
questions. During the development of the activity, the teacher is guiding the work of 
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the groups; while evaluating their progress, providing guidance and addressing specifi c 
questions.

However, during the teacher interaction with the students some confl icts arise 
when the students have to answer the fi rst question (confl ict with the meaning of “typical 
student”):

E6: [...] What should we consider to select a typical student?

P: You have to fi nd out how many women and men are there, and then ... if there 
are more women it would be more representative to take a woman.

E6: And then, do we do the same with all the variables?

Q: For other variables, such as sport, you have to see how many people do not 
practice sport, and how many practice little or a lot of sport. Then you see which 
of these values is more representative ... 

The teacher’s performance is motivated by the observation that some students 
attribute no meaning to the phrase “typical student”; a semiotic confl ict is recognized 
because he implements a dialogic interaction format (which is a positive indicator of 
interactional suitability). However, the teacher solves the question, which is negative 
from the point of view of cognitive suitability (prevents the student himself to investigate 
the meaning of a typical student). Regarding the epistemic and ecological dimension, it 
is positive to recognize the confl ict between the meanings of an expression in everyday 
language versus the statistical meaning.

In Godino et al. (2014) other didactical facts and interpretations that illustrate some 
features of the instructional model implemented in this experience are shown and; in 
particular the way in which, within a data analysis project based teaching, it is necessary to 
include some transmissive moments. Such moments of the study process are determined by 
the observation of blocking situations that prevent the students learning progression.

SYNTHESIS AND IMPLICATIONS
In this paper, we argued that instructional models based only on inquiry, or only 

on transmission are simplifi cations of an extraordinarily complex reality: the teaching 
and learning processes. As Hiebert and Grouws (2007) write, “classrooms are fi lled with 
complex dynamics, and many factors could be responsible for increased student learning. 
[…] This is a very central and diffi cult question to answer” (p.371).

Although we need to establish instructional designs based on the use of rich 
problem – situations, which guide the learning and decision-making at the global and 
intermediate level, local implementation of didactical systems also requires special 
attention to managing the students’ background needed for solving the problems, and 
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to the systematization of emerging knowledge. Decisions about the type of help needed 
essentially have a local component, and are mainly the teacher’s responsibility; he /she 
needs some guidance in making these decisions to optimize the didactical suitability of 
the study process.

Hudson, Miller & Butler (2006) justify the implementation of mixed instructional 
models that adapt and mix explicit instruction (teacher-focused) with that based on 
problem solving (learner focused) taking into account the need for curricular adaptations 
given by the diversity of students’ abilities. Similar conclusions were reached by Steele 
(2005), for whom, “The best teaching will often integrate ideas from constructivist and 
behaviorist principles” (p.3).

We also have supplemented the cognitive arguments of Kirschner, Sweller, and 
Clark (2006) in favour of models based on the transmission of knowledge in the case 
of mathematical learning, with reasons of onto-semiotic nature: What students need 
to learn are mainly, mathematical rules, the circumstances of their application and 
the required conditions for a proper application. The learners start from known rules 
(concepts, propositions, and procedures) and produce others rules that should be shared 
and compatible with those already established in the mathematical culture. Such rules 
(knowledge) must be stored in the subject’s long-term memory and put to work at the 
right time in the short-term memory.

The scarce dissemination of IBE models in actual classrooms and the persistence 
of models based on the transmission and reception of knowledge can be explained 
not only by the teachers’ inertia and lack of preparation, but by their perception or 
experience that the transmission models may be more appropriate for the specifi c 
circumstances of their classes. Faced with the dilemma that a majority of students 
learn nothing, get frustrated and disturb the class, it may be reasonable to diminish the 
learning expectations and opt for most students to learn something, even only routines 
and algorithms, and some examples to imitate. This may be a reason to support a 
mixed instructional model that articulates coherently, locally and dialectically inquiry 
and transmission.

The teacher can be convinced that direct instruction, verbal communication, 
supported by the collective display on the board of mathematical notation, is effective, 
provided that it is accompanied by an active students’ reception. Can we ensure it is 
wrong when a lot of knowledge we learn in our lives is learned this way? Ausubel 
(2002) reasons and insists that learning can be signifi cant even when it is based on oral 
presentation and reception.

Students should be given a chance to implement the mathematical activity, but also 
to know and master the mathematical cultural products that other people have developed 
as a result of their own activity. In addition, remembering and interpreting mathematical 
rules previously learned form part of the mathematical activity, and that are essential for 
the activity taking place (GODINO; CONTRERAS; FONT, 2006).
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